/*************************************************************************** This is a library for the BME280 humidity, temperature & pressure sensor Designed specifically to work with the Adafruit BME280 Breakout ----> http://www.adafruit.com/products/2650 These sensors use I2C or SPI to communicate, 2 or 4 pins are required to interface. Adafruit invests time and resources providing this open source code, please support Adafruit andopen-source hardware by purchasing products from Adafruit! Written by Limor Fried & Kevin Townsend for Adafruit Industries. BSD license, all text above must be included in any redistribution ***************************************************************************/ #include "Arduino.h" #include #include "BME280.h" /*************************************************************************** PRIVATE FUNCTIONS ***************************************************************************/ bool BME280::begin(uint8_t a) { _i2caddr = a; if (read8(BME280_REGISTER_CHIPID) != 0x60) return false; readCoefficients(); //Set before CONTROL_meas (DS 5.4.3) write8(BME280_REGISTER_CONTROLHUMID, 0x05); //16x oversampling write8(BME280_REGISTER_CONTROL, 0xB7); // 16x ovesampling, normal mode return true; } /**************************************************************************/ /*! @brief Writes an 8 bit value over I2C/SPI */ /**************************************************************************/ void BME280::write8(byte reg, byte value) { Wire.beginTransmission((uint8_t)_i2caddr); Wire.write((uint8_t)reg); Wire.write((uint8_t)value); Wire.endTransmission(); } /**************************************************************************/ /*! @brief Reads an 8 bit value over I2C */ /**************************************************************************/ uint8_t BME280::read8(byte reg) { uint8_t value; Wire.beginTransmission((uint8_t)_i2caddr); Wire.write((uint8_t)reg); Wire.endTransmission(); Wire.requestFrom((uint8_t)_i2caddr, (byte)1); value = Wire.read(); return value; } /**************************************************************************/ /*! @brief Reads a 16 bit value over I2C */ /**************************************************************************/ uint16_t BME280::read16(byte reg) { uint16_t value; Wire.beginTransmission((uint8_t)_i2caddr); Wire.write((uint8_t)reg); Wire.endTransmission(); Wire.requestFrom((uint8_t)_i2caddr, (byte)2); value = (Wire.read() << 8) | Wire.read(); return value; } uint16_t BME280::read16_LE(byte reg) { uint16_t temp = read16(reg); return (temp >> 8) | (temp << 8); } /**************************************************************************/ /*! @brief Reads a signed 16 bit value over I2C */ /**************************************************************************/ int16_t BME280::readS16(byte reg) { return (int16_t)read16(reg); } int16_t BME280::readS16_LE(byte reg) { return (int16_t)read16_LE(reg); } /**************************************************************************/ /*! @brief Reads a 24 bit value over I2C */ /**************************************************************************/ uint32_t BME280::read24(byte reg) { uint32_t value; Wire.beginTransmission((uint8_t)_i2caddr); Wire.write((uint8_t)reg); Wire.endTransmission(); Wire.requestFrom((uint8_t)_i2caddr, (byte)3); value = Wire.read(); value <<= 8; value |= Wire.read(); value <<= 8; value |= Wire.read(); return value; } /**************************************************************************/ /*! @brief Reads the factory-set coefficients */ /**************************************************************************/ void BME280::readCoefficients(void) { _bme280_calib.dig_T1 = read16_LE(BME280_REGISTER_DIG_T1); _bme280_calib.dig_T2 = readS16_LE(BME280_REGISTER_DIG_T2); _bme280_calib.dig_T3 = readS16_LE(BME280_REGISTER_DIG_T3); _bme280_calib.dig_P1 = read16_LE(BME280_REGISTER_DIG_P1); _bme280_calib.dig_P2 = readS16_LE(BME280_REGISTER_DIG_P2); _bme280_calib.dig_P3 = readS16_LE(BME280_REGISTER_DIG_P3); _bme280_calib.dig_P4 = readS16_LE(BME280_REGISTER_DIG_P4); _bme280_calib.dig_P5 = readS16_LE(BME280_REGISTER_DIG_P5); _bme280_calib.dig_P6 = readS16_LE(BME280_REGISTER_DIG_P6); _bme280_calib.dig_P7 = readS16_LE(BME280_REGISTER_DIG_P7); _bme280_calib.dig_P8 = readS16_LE(BME280_REGISTER_DIG_P8); _bme280_calib.dig_P9 = readS16_LE(BME280_REGISTER_DIG_P9); _bme280_calib.dig_H1 = read8(BME280_REGISTER_DIG_H1); _bme280_calib.dig_H2 = readS16_LE(BME280_REGISTER_DIG_H2); _bme280_calib.dig_H3 = read8(BME280_REGISTER_DIG_H3); _bme280_calib.dig_H4 = (read8(BME280_REGISTER_DIG_H4) << 4) | (read8(BME280_REGISTER_DIG_H4+1) & 0xF); _bme280_calib.dig_H5 = (read8(BME280_REGISTER_DIG_H5+1) << 4) | (read8(BME280_REGISTER_DIG_H5) >> 4); _bme280_calib.dig_H6 = (int8_t)read8(BME280_REGISTER_DIG_H6); } /**************************************************************************/ /*! */ /**************************************************************************/ float BME280::temperature(void) { int32_t var1, var2; int32_t adc_T = read24(BME280_REGISTER_TEMPDATA); adc_T >>= 4; var1 = ((((adc_T>>3) - ((int32_t)_bme280_calib.dig_T1 <<1))) * ((int32_t)_bme280_calib.dig_T2)) >> 11; var2 = (((((adc_T>>4) - ((int32_t)_bme280_calib.dig_T1)) * ((adc_T>>4) - ((int32_t)_bme280_calib.dig_T1))) >> 12) * ((int32_t)_bme280_calib.dig_T3)) >> 14; t_fine = var1 + var2; float T = (t_fine * 5 + 128) >> 8; return T/100; } /**************************************************************************/ /*! */ /**************************************************************************/ float BME280::pressure(void) { int64_t var1, var2, p; temperature(); // must be done first to get t_fine int32_t adc_P = read24(BME280_REGISTER_PRESSUREDATA); adc_P >>= 4; var1 = ((int64_t)t_fine) - 128000; var2 = var1 * var1 * (int64_t)_bme280_calib.dig_P6; var2 = var2 + ((var1*(int64_t)_bme280_calib.dig_P5)<<17); var2 = var2 + (((int64_t)_bme280_calib.dig_P4)<<35); var1 = ((var1 * var1 * (int64_t)_bme280_calib.dig_P3)>>8) + ((var1 * (int64_t)_bme280_calib.dig_P2)<<12); var1 = (((((int64_t)1)<<47)+var1))*((int64_t)_bme280_calib.dig_P1)>>33; if (var1 == 0) { return 0; // avoid exception caused by division by zero } p = 1048576 - adc_P; p = (((p<<31) - var2)*3125) / var1; var1 = (((int64_t)_bme280_calib.dig_P9) * (p>>13) * (p>>13)) >> 25; var2 = (((int64_t)_bme280_calib.dig_P8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((int64_t)_bme280_calib.dig_P7)<<4); return (float)p/256; } /**************************************************************************/ /*! */ /**************************************************************************/ float BME280::humidity(void) { temperature(); // must be done first to get t_fine int32_t adc_H = read16(BME280_REGISTER_HUMIDDATA); int32_t v_x1_u32r; v_x1_u32r = (t_fine - ((int32_t)76800)); v_x1_u32r = (((((adc_H << 14) - (((int32_t)_bme280_calib.dig_H4) << 20) - (((int32_t)_bme280_calib.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)_bme280_calib.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)_bme280_calib.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)_bme280_calib.dig_H2) + 8192) >> 14)); v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)_bme280_calib.dig_H1)) >> 4)); v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r; v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r; float h = (v_x1_u32r>>12); return h / 1024.0; } /**************************************************************************/ /*! Calculates the altitude (in meters) from the specified atmospheric pressure (in hPa), and sea-level pressure (in hPa). @param seaLevel Sea-level pressure in hPa @param atmospheric Atmospheric pressure in hPa */ /**************************************************************************/ float BME280::altitude(float seaLevel) { // Equation taken from BMP180 datasheet (page 16): // http://www.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf // Note that using the equation from wikipedia can give bad results // at high altitude. See this thread for more information: // http://forums.adafruit.com/viewtopic.php?f=22&t=58064 float atmospheric = pressure() / 100.0F; return 44330.0 * (1.0 - pow(atmospheric / seaLevel, 0.1903)); } BME280 bme280;