/* * Copyright (C) 2009-2012 by Matthias Ringwald * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at btstack@ringwald.ch * */ /* * hci.c * * Created by Matthias Ringwald on 4/29/09. * */ #include "btstack-config.h" #include "hci.h" #include "gap.h" #include #include #include #ifndef EMBEDDED #ifdef _WIN32 #include "Winsock2.h" #else #include // gethostbyname #endif #include #endif #include "btstack_memory.h" #include "debug.h" #include "hci_dump.h" #include #include #define HCI_CONNECTION_TIMEOUT_MS 10000 #define HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP 11 #ifdef USE_BLUETOOL #include "../platforms/ios/src/bt_control_iphone.h" #endif static void hci_update_scan_enable(void); static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection); static void hci_connection_timeout_handler(timer_source_t *timer); static void hci_connection_timestamp(hci_connection_t *connection); static int hci_power_control_on(void); static void hci_power_control_off(void); static void hci_state_reset(); // the STACK is here #ifndef HAVE_MALLOC /*static*/ hci_stack_t hci_stack_static; #endif static hci_stack_t * hci_stack = NULL; // test helper static uint8_t disable_l2cap_timeouts = 0; /** * create connection for given address * * @return connection OR NULL, if no memory left */ static hci_connection_t * create_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ hci_connection_t * conn; log_info("create_connection_for_addr %s", bd_addr_to_str(addr)); conn = btstack_memory_hci_connection_get(); if (!conn) return NULL; BD_ADDR_COPY(conn->address, addr); conn->address_type = addr_type; conn->con_handle = 0xffff; conn->authentication_flags = AUTH_FLAGS_NONE; conn->bonding_flags = 0; conn->requested_security_level = LEVEL_0; linked_item_set_user(&conn->timeout.item, conn); conn->timeout.process = hci_connection_timeout_handler; hci_connection_timestamp(conn); conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; conn->num_acl_packets_sent = 0; conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; linked_list_add(&hci_stack->connections, (linked_item_t *) conn); return conn; } /** * get le connection parameter range * * @return le connection parameter range struct */ le_connection_parameter_range_t gap_le_get_connection_parameter_range(){ return hci_stack->le_connection_parameter_range; } /** * set le connection parameter range * */ void gap_le_set_connection_parameter_range(le_connection_parameter_range_t range){ hci_stack->le_connection_parameter_range.le_conn_interval_min = range.le_conn_interval_min; hci_stack->le_connection_parameter_range.le_conn_interval_max = range.le_conn_interval_max; hci_stack->le_connection_parameter_range.le_conn_interval_min = range.le_conn_latency_min; hci_stack->le_connection_parameter_range.le_conn_interval_max = range.le_conn_latency_max; hci_stack->le_connection_parameter_range.le_supervision_timeout_min = range.le_supervision_timeout_min; hci_stack->le_connection_parameter_range.le_supervision_timeout_max = range.le_supervision_timeout_max; } /** * get hci connections iterator * * @return hci connections iterator */ void hci_connections_get_iterator(linked_list_iterator_t *it){ linked_list_iterator_init(it, &hci_stack->connections); } /** * get connection for a given handle * * @return connection OR NULL, if not found */ hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){ linked_list_iterator_t it; linked_list_iterator_init(&it, &hci_stack->connections); while (linked_list_iterator_has_next(&it)){ hci_connection_t * item = (hci_connection_t *) linked_list_iterator_next(&it); if ( item->con_handle == con_handle ) { return item; } } return NULL; } /** * get connection for given address * * @return connection OR NULL, if not found */ hci_connection_t * hci_connection_for_bd_addr_and_type(bd_addr_t * addr, bd_addr_type_t addr_type){ linked_list_iterator_t it; linked_list_iterator_init(&it, &hci_stack->connections); while (linked_list_iterator_has_next(&it)){ hci_connection_t * connection = (hci_connection_t *) linked_list_iterator_next(&it); if (connection->address_type != addr_type) continue; if (memcmp(addr, connection->address, 6) != 0) continue; return connection; } return NULL; } static void hci_connection_timeout_handler(timer_source_t *timer){ hci_connection_t * connection = (hci_connection_t *) linked_item_get_user(&timer->item); #ifdef HAVE_TIME struct timeval tv; gettimeofday(&tv, NULL); if (tv.tv_sec >= connection->timestamp.tv_sec + HCI_CONNECTION_TIMEOUT_MS/1000) { // connections might be timed out hci_emit_l2cap_check_timeout(connection); } #endif #ifdef HAVE_TICK if (embedded_get_ticks() > connection->timestamp + embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){ // connections might be timed out hci_emit_l2cap_check_timeout(connection); } #endif run_loop_set_timer(timer, HCI_CONNECTION_TIMEOUT_MS); run_loop_add_timer(timer); } static void hci_connection_timestamp(hci_connection_t *connection){ #ifdef HAVE_TIME gettimeofday(&connection->timestamp, NULL); #endif #ifdef HAVE_TICK connection->timestamp = embedded_get_ticks(); #endif } /*inline*/ static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags); } /*inline*/ static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags); } /** * add authentication flags and reset timer * @note: assumes classic connection */ static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){ bd_addr_t addr; hci_connection_t * conn; bt_flip_addr(addr, *(bd_addr_t *) bd_addr); conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); if (conn) { connectionSetAuthenticationFlags(conn, flags); hci_connection_timestamp(conn); } } int hci_authentication_active_for_handle(hci_con_handle_t handle){ hci_connection_t * conn = hci_connection_for_handle(handle); if (!conn) return 0; if (conn->authentication_flags & LEGACY_PAIRING_ACTIVE) return 1; if (conn->authentication_flags & SSP_PAIRING_ACTIVE) return 1; return 0; } void hci_drop_link_key_for_bd_addr(bd_addr_t *addr){ if (hci_stack->remote_device_db) { hci_stack->remote_device_db->delete_link_key(addr); } } int hci_is_le_connection(hci_connection_t * connection){ return connection->address_type == BD_ADDR_TYPE_LE_PUBLIC || connection->address_type == BD_ADDR_TYPE_LE_RANDOM; } /** * count connections */ static int nr_hci_connections(void){ int count = 0; linked_item_t *it; for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next, count++); return count; } /** * Dummy handler called by HCI */ static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ } uint8_t hci_number_outgoing_packets(hci_con_handle_t handle){ hci_connection_t * connection = hci_connection_for_handle(handle); if (!connection) { log_error("hci_number_outgoing_packets: connection for handle %u does not exist!", handle); return 0; } return connection->num_acl_packets_sent; } uint8_t hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){ int num_packets_sent_classic = 0; int num_packets_sent_le = 0; bd_addr_type_t address_type = BD_ADDR_TYPE_UNKNOWN; linked_item_t *it; int free_slots_classic; int free_slots_le; for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (connection->address_type == BD_ADDR_TYPE_CLASSIC){ num_packets_sent_classic += connection->num_acl_packets_sent; } else { num_packets_sent_le += connection->num_acl_packets_sent; } if (connection->con_handle == con_handle){ address_type = connection->address_type; } } free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic; free_slots_le = 0; if (free_slots_classic < 0){ log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num); return 0; } if (hci_stack->le_acl_packets_total_num){ // if we have LE slots, they are used free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le; if (free_slots_le < 0){ log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num); return 0; } } else { // otherwise, classic slots are used for LE, too free_slots_classic -= num_packets_sent_le; if (free_slots_classic < 0){ log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num); return 0; } } switch (address_type){ case BD_ADDR_TYPE_UNKNOWN: log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle); return 0; case BD_ADDR_TYPE_CLASSIC: return free_slots_classic; default: if (hci_stack->le_acl_packets_total_num){ return free_slots_le; } return free_slots_classic; } } // @deprecated int hci_can_send_packet_now(uint8_t packet_type){ switch (packet_type) { case HCI_ACL_DATA_PACKET: return hci_can_send_prepared_acl_packet_now(0); case HCI_COMMAND_DATA_PACKET: return hci_can_send_command_packet_now(); default: return 0; } } // @deprecated // same as hci_can_send_packet_now, but also checks if packet buffer is free for use int hci_can_send_packet_now_using_packet_buffer(uint8_t packet_type){ if (hci_stack->hci_packet_buffer_reserved) return 0; switch (packet_type) { case HCI_ACL_DATA_PACKET: return hci_can_send_acl_packet_now(0); case HCI_COMMAND_DATA_PACKET: return hci_can_send_command_packet_now(); default: return 0; } } // new functions replacing hci_can_send_packet_now[_using_packet_buffer] int hci_can_send_command_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return 0; // check for async hci transport implementations if (hci_stack->hci_transport->can_send_packet_now){ if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){ return 0; } } return hci_stack->num_cmd_packets > 0; } int hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) { // check for async hci transport implementations if (hci_stack->hci_transport->can_send_packet_now){ if (!hci_stack->hci_transport->can_send_packet_now(HCI_ACL_DATA_PACKET)){ return 0; } } return hci_number_free_acl_slots_for_handle(con_handle) > 0; } int hci_can_send_acl_packet_now(hci_con_handle_t con_handle){ if (hci_stack->hci_packet_buffer_reserved) return 0; return hci_can_send_prepared_acl_packet_now(con_handle); } // used for internal checks in l2cap[-le].c int hci_is_packet_buffer_reserved(void){ return hci_stack->hci_packet_buffer_reserved; } // reserves outgoing packet buffer. @returns 1 if successful int hci_reserve_packet_buffer(void){ if (hci_stack->hci_packet_buffer_reserved) { log_error("hci_reserve_packet_buffer called but buffer already reserved"); return 0; } hci_stack->hci_packet_buffer_reserved = 1; return 1; } void hci_release_packet_buffer(void){ hci_stack->hci_packet_buffer_reserved = 0; } // assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call int hci_transport_synchronous(void){ return hci_stack->hci_transport->can_send_packet_now == NULL; } uint16_t hci_max_acl_le_data_packet_length(void){ return hci_stack->le_data_packets_length > 0 ? hci_stack->le_data_packets_length : hci_stack->acl_data_packet_length; } static int hci_send_acl_packet_fragments(hci_connection_t *connection){ uint16_t max_acl_data_packet_length; int err; // log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle); // max ACL data packet length depends on connection type (LE vs. Classic) and available buffers max_acl_data_packet_length = hci_stack->acl_data_packet_length; if (hci_is_le_connection(connection) && hci_stack->le_data_packets_length > 0){ max_acl_data_packet_length = hci_stack->le_data_packets_length; } // testing: reduce buffer to minimum // max_acl_data_packet_length = 52; // multiple packets could be send on a synchronous HCI transport while (1){ // get current data const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4; int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos; int more_fragments = 0; uint8_t * packet; int size; // if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length if (current_acl_data_packet_length > max_acl_data_packet_length){ more_fragments = 1; current_acl_data_packet_length = max_acl_data_packet_length; } // copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent) if (acl_header_pos > 0){ uint16_t handle_and_flags = READ_BT_16(hci_stack->hci_packet_buffer, 0); handle_and_flags = (handle_and_flags & 0xcfff) | (1 << 12); bt_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags); } // update header len bt_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2, current_acl_data_packet_length); // count packet connection->num_acl_packets_sent++; // send packet packet = &hci_stack->hci_packet_buffer[acl_header_pos]; size = current_acl_data_packet_length + 4; hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size); err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); // done yet? if (!more_fragments) break; // update start of next fragment to send hci_stack->acl_fragmentation_pos += current_acl_data_packet_length; // can send more? if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return err; } // done hci_stack->acl_fragmentation_pos = 0; hci_stack->acl_fragmentation_total_size = 0; // release buffer now for synchronous transport if (hci_transport_synchronous()){ hci_release_packet_buffer(); } return err; } // pre: caller has reserved the packet buffer int hci_send_acl_packet_buffer(int size){ uint8_t * packet; hci_con_handle_t con_handle; hci_connection_t *connection; // log_info("hci_send_acl_packet_buffer size %u", size); if (!hci_stack->hci_packet_buffer_reserved) { log_error("hci_send_acl_packet_buffer called without reserving packet buffer"); return 0; } packet = hci_stack->hci_packet_buffer; con_handle = READ_ACL_CONNECTION_HANDLE(packet); // check for free places on Bluetooth module if (!hci_can_send_prepared_acl_packet_now(con_handle)) { log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller"); hci_release_packet_buffer(); return BTSTACK_ACL_BUFFERS_FULL; } connection = hci_connection_for_handle( con_handle); if (!connection) { log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle); hci_release_packet_buffer(); return 0; } hci_connection_timestamp(connection); // hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size); // setup data hci_stack->acl_fragmentation_total_size = size; hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet return hci_send_acl_packet_fragments(connection); } static void acl_handler(uint8_t *packet, int size){ // log_info("acl_handler: size %u", size); // get info hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); hci_connection_t *conn = hci_connection_for_handle(con_handle); uint8_t acl_flags = READ_ACL_FLAGS(packet); uint16_t acl_length = READ_ACL_LENGTH(packet); // ignore non-registered handle if (!conn){ log_error( "hci.c: acl_handler called with non-registered handle %u!" , con_handle); return; } // assert packet is complete if (acl_length + 4 != size){ log_error("hci.c: acl_handler called with ACL packet of wrong size %u, expected %u => dropping packet", size, acl_length + 4); return; } // update idle timestamp hci_connection_timestamp(conn); // handle different packet types switch (acl_flags & 0x03) { case 0x01: // continuation fragment // sanity checks if (conn->acl_recombination_pos == 0) { log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle); return; } if (conn->acl_recombination_pos + acl_length > 4 + HCI_ACL_BUFFER_SIZE){ log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x", conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); conn->acl_recombination_pos = 0; return; } // append fragment payload (header already stored) memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos], &packet[4], acl_length ); conn->acl_recombination_pos += acl_length; // log_error( "ACL Cont Fragment: acl_len %u, combined_len %u, l2cap_len %u", acl_length, // conn->acl_recombination_pos, conn->acl_recombination_length); // forward complete L2CAP packet if complete. if (conn->acl_recombination_pos >= conn->acl_recombination_length + 4 + 4){ // pos already incl. ACL header hci_stack->packet_handler(HCI_ACL_DATA_PACKET, &conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos); // reset recombination buffer conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; } break; case 0x02: { // first fragment uint16_t l2cap_length; // sanity check if (conn->acl_recombination_pos) { log_error( "ACL First Fragment but data in buffer for handle 0x%02x, dropping stale fragments", con_handle); conn->acl_recombination_pos = 0; } // peek into L2CAP packet! l2cap_length = READ_L2CAP_LENGTH( packet ); // log_info( "ACL First Fragment: acl_len %u, l2cap_len %u", acl_length, l2cap_length); // compare fragment size to L2CAP packet size if (acl_length >= l2cap_length + 4){ // forward fragment as L2CAP packet hci_stack->packet_handler(HCI_ACL_DATA_PACKET, packet, acl_length + 4); } else { if (acl_length > HCI_ACL_BUFFER_SIZE){ log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x", 4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); return; } // store first fragment and tweak acl length for complete package memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], packet, acl_length + 4); conn->acl_recombination_pos = acl_length + 4; conn->acl_recombination_length = l2cap_length; bt_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2, l2cap_length +4); } break; } default: log_error( "hci.c: acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03); return; } // execute main loop hci_run(); } static void hci_shutdown_connection(hci_connection_t *conn){ log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address)); run_loop_remove_timer(&conn->timeout); linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); // now it's gone hci_emit_nr_connections_changed(); } static const uint16_t packet_type_sizes[] = { 0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE, HCI_ACL_DH1_SIZE, 0, 0, 0, HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE, HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE }; static const uint8_t packet_type_feature_requirement_bit[] = { 0, // 3 slot packets 1, // 5 slot packets 25, // EDR 2 mpbs 26, // EDR 3 mbps 39, // 3 slot EDR packts 40, // 5 slot EDR packet }; static const uint16_t packet_type_feature_packet_mask[] = { 0x0f00, // 3 slot packets 0xf000, // 5 slot packets 0x1102, // EDR 2 mpbs 0x2204, // EDR 3 mbps 0x0300, // 3 slot EDR packts 0x3000, // 5 slot EDR packet }; static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){ // enable packet types based on size uint16_t packet_types = 0; unsigned int i; for (i=0;i<16;i++){ if (packet_type_sizes[i] == 0) continue; if (packet_type_sizes[i] <= buffer_size){ packet_types |= 1 << i; } } // disable packet types due to missing local supported features for (i=0;i> 3] & (1<<(bit_idx & 7))) != 0; if (feature_set) continue; log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, packet_type_feature_packet_mask[i]); packet_types &= ~packet_type_feature_packet_mask[i]; } // flip bits for "may not be used" packet_types ^= 0x3306; return packet_types; } uint16_t hci_usable_acl_packet_types(void){ return hci_stack->packet_types; } uint8_t* hci_get_outgoing_packet_buffer(void){ // hci packet buffer is >= acl data packet length return hci_stack->hci_packet_buffer; } uint16_t hci_max_acl_data_packet_length(void){ return hci_stack->acl_data_packet_length; } int hci_non_flushable_packet_boundary_flag_supported(void){ // No. 54, byte 6, bit 6 return (hci_stack->local_supported_features[6] & (1 << 6)) != 0; } int hci_ssp_supported(void){ // No. 51, byte 6, bit 3 return (hci_stack->local_supported_features[6] & (1 << 3)) != 0; } int hci_classic_supported(void){ // No. 37, byte 4, bit 5, = No BR/EDR Support return (hci_stack->local_supported_features[4] & (1 << 5)) == 0; } int hci_le_supported(void){ #ifdef HAVE_BLE // No. 37, byte 4, bit 6 = LE Supported (Controller) return (hci_stack->local_supported_features[4] & (1 << 6)) != 0; #else return 0; #endif } // get addr type and address used in advertisement packets void hci_le_advertisement_address(uint8_t * addr_type, bd_addr_t * addr){ *addr_type = hci_stack->adv_addr_type; if (hci_stack->adv_addr_type){ memcpy(addr, hci_stack->adv_address, 6); } else { memcpy(addr, hci_stack->local_bd_addr, 6); } } #ifdef HAVE_BLE void le_handle_advertisement_report(uint8_t *packet, int size){ int offset = 3; int num_reports = packet[offset]; offset += 1; int i; log_info("HCI: handle adv report with num reports: %d", num_reports); for (i=0; ipacket_handler(HCI_EVENT_PACKET, event, sizeof(event)); } } #endif static void hci_initializing_event_handler(uint8_t * packet, uint16_t size){ uint8_t command_completed = 0; if ((hci_stack->substate % 2) == 0) return; // odd: waiting for event if (packet[0] == HCI_EVENT_COMMAND_COMPLETE){ uint16_t opcode = READ_BT_16(packet,3); if (opcode == hci_stack->last_cmd_opcode){ command_completed = 1; log_info("Command complete for expected opcode %04x -> new substate %u", opcode, hci_stack->substate); } else { log_info("Command complete for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); } } if (packet[0] == HCI_EVENT_COMMAND_STATUS){ uint8_t status = packet[2]; uint16_t opcode = READ_BT_16(packet,4); if (opcode == hci_stack->last_cmd_opcode){ if (status){ command_completed = 1; log_error("Command status error 0x%02x for expected opcode %04x -> new substate %u", status, opcode, hci_stack->substate); } else { log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode); } } else { log_info("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); } } if (!command_completed) return; switch(hci_stack->substate >> 1){ default: hci_stack->substate++; break; } } static void hci_initializing_state_machine(){ // log_info("hci_init: substate %u", hci_stack->substate); if (hci_stack->substate % 2) { // odd: waiting for command completion return; } switch (hci_stack->substate >> 1){ case 0: // RESET hci_state_reset(); hci_send_cmd(&hci_reset); if (hci_stack->config == NULL || ((hci_uart_config_t *)hci_stack->config)->baudrate_main == 0){ // skip baud change hci_stack->substate = 4; // >> 1 = 2 } break; case 1: // SEND BAUD CHANGE hci_stack->control->baudrate_cmd(hci_stack->config, ((hci_uart_config_t *)hci_stack->config)->baudrate_main, hci_stack->hci_packet_buffer); hci_stack->last_cmd_opcode = READ_BT_16(hci_stack->hci_packet_buffer, 0); hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); break; case 2: // LOCAL BAUD CHANGE log_info("Local baud rate change"); hci_stack->hci_transport->set_baudrate(((hci_uart_config_t *)hci_stack->config)->baudrate_main); hci_stack->substate += 2; // break missing here for fall through case 3: log_info("Custom init"); // Custom initialization if (hci_stack->control && hci_stack->control->next_cmd){ int valid_cmd = (*hci_stack->control->next_cmd)(hci_stack->config, hci_stack->hci_packet_buffer); if (valid_cmd){ int size = 3 + hci_stack->hci_packet_buffer[2]; hci_stack->last_cmd_opcode = READ_BT_16(hci_stack->hci_packet_buffer, 0); hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, hci_stack->hci_packet_buffer, size); hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, hci_stack->hci_packet_buffer, size); hci_stack->substate = 4; // more init commands break; } log_info("hci_run: init script done"); } // otherwise continue hci_send_cmd(&hci_read_bd_addr); break; case 4: hci_send_cmd(&hci_read_buffer_size); break; case 5: hci_send_cmd(&hci_read_local_supported_features); break; case 6: if (hci_le_supported()){ hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x3FFFFFFF); } else { // Kensington Bluetoot 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff... hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x1FFFFFFF); } // skip Classic init commands for LE only chipsets if (!hci_classic_supported()){ if (hci_le_supported()){ hci_stack->substate = 11 << 1; // skip all classic command } else { log_error("Neither BR/EDR nor LE supported"); hci_stack->substate = 14 << 1; // skip all } } break; case 7: if (hci_ssp_supported()){ hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable); break; } hci_stack->substate += 2; // break missing here for fall through case 8: // ca. 15 sec hci_send_cmd(&hci_write_page_timeout, 0x6000); break; case 9: hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device); break; case 10: if (hci_stack->local_name){ hci_send_cmd(&hci_write_local_name, hci_stack->local_name); } else { char hostname[30]; #ifdef EMBEDDED // BTstack-11:22:33:44:55:66 strlcpy(hostname, "BTstack ", sizeof(hostname)); strlcat(hostname, bd_addr_to_str(hci_stack->local_bd_addr), sizeof(hostname)); log_info("---> Name %s", hostname); #else // hostname for POSIX systems gethostname(hostname, 30); hostname[29] = '\0'; #endif hci_send_cmd(&hci_write_local_name, hostname); } break; case 11: hci_send_cmd(&hci_write_scan_enable, (hci_stack->connectable << 1) | hci_stack->discoverable); // page scan if (!hci_le_supported()){ // SKIP LE init for Classic only configuration hci_stack->substate = 14 << 1; } break; #ifdef HAVE_BLE // LE INIT case 12: hci_send_cmd(&hci_le_read_buffer_size); break; case 13: // LE Supported Host = 1, Simultaneous Host = 0 hci_send_cmd(&hci_write_le_host_supported, 1, 0); break; case 14: // LE Scan Parameters: active scanning, 300 ms interval, 30 ms window, public address, accept all advs hci_send_cmd(&hci_le_set_scan_parameters, 1, 0x1e0, 0x30, 0, 0); break; #endif // DONE case 15: // done. hci_stack->state = HCI_STATE_WORKING; hci_emit_state(); break; default: break; } hci_stack->substate++; } // avoid huge local variables #ifndef EMBEDDED static device_name_t device_name; #endif static void event_handler(uint8_t *packet, int size){ uint16_t event_length = packet[1]; bd_addr_t addr; bd_addr_type_t addr_type; uint8_t link_type; hci_con_handle_t handle; hci_connection_t * conn; int i; // assert packet is complete if (size != event_length + 2){ log_error("hci.c: event_handler called with event packet of wrong size %u, expected %u => dropping packet", size, event_length + 2); return; } /**/ log_info("HCI:EVENT:%02x", packet[0]); switch (packet[0]) { case HCI_EVENT_COMMAND_COMPLETE: // get num cmd packets // log_info("HCI_EVENT_COMMAND_COMPLETE cmds old %u - new %u", hci_stack->num_cmd_packets, packet[2]); hci_stack->num_cmd_packets = packet[2]; if (COMMAND_COMPLETE_EVENT(packet, hci_read_buffer_size)){ // from offset 5 // status // "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets" hci_stack->acl_data_packet_length = READ_BT_16(packet, 6); // ignore: SCO data packet len (8) hci_stack->acl_packets_total_num = packet[9]; // ignore: total num SCO packets if (hci_stack->state == HCI_STATE_INITIALIZING){ // determine usable ACL payload size if (HCI_ACL_PAYLOAD_SIZE < hci_stack->acl_data_packet_length){ hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; } log_info("hci_read_buffer_size: used size %u, count %u", hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num); } } #ifdef HAVE_BLE if (COMMAND_COMPLETE_EVENT(packet, hci_le_read_buffer_size)){ hci_stack->le_data_packets_length = READ_BT_16(packet, 6); hci_stack->le_acl_packets_total_num = packet[8]; // determine usable ACL payload size if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){ hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE; } log_info("hci_le_read_buffer_size: size %u, count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num); } #endif // Dump local address if (COMMAND_COMPLETE_EVENT(packet, hci_read_bd_addr)) { bt_flip_addr(hci_stack->local_bd_addr, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1]); log_info("Local Address, Status: 0x%02x: Addr: %s", packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE], bd_addr_to_str(hci_stack->local_bd_addr)); } if (COMMAND_COMPLETE_EVENT(packet, hci_write_scan_enable)){ hci_emit_discoverable_enabled(hci_stack->discoverable); } // Note: HCI init checks if (COMMAND_COMPLETE_EVENT(packet, hci_read_local_supported_features)){ memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 8); log_info("Local Supported Features: 0x%02x%02x%02x%02x%02x%02x%02x%02x", hci_stack->local_supported_features[0], hci_stack->local_supported_features[1], hci_stack->local_supported_features[2], hci_stack->local_supported_features[3], hci_stack->local_supported_features[4], hci_stack->local_supported_features[5], hci_stack->local_supported_features[6], hci_stack->local_supported_features[7]); // determine usable ACL packet types based on host buffer size and supported features hci_stack->packet_types = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]); log_info("packet types %04x", hci_stack->packet_types); // Classic/LE log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported()); } break; case HCI_EVENT_COMMAND_STATUS: // get num cmd packets // log_info("HCI_EVENT_COMMAND_STATUS cmds - old %u - new %u", hci_stack->num_cmd_packets, packet[3]); hci_stack->num_cmd_packets = packet[3]; break; case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{ int offset = 3; for (i=0; inum_acl_packets_sent >= num_packets){ conn->num_acl_packets_sent -= num_packets; } else { log_error("hci_number_completed_packets, more slots freed then sent."); conn->num_acl_packets_sent = 0; } // log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_acl_packets_sent); } break; } case HCI_EVENT_CONNECTION_REQUEST: bt_flip_addr(addr, &packet[2]); // TODO: eval COD 8-10 link_type = packet[11]; log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), link_type); if (link_type == 1) { // ACL conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); if (!conn) { conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); } if (!conn) { // CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D) hci_stack->decline_reason = 0x0d; BD_ADDR_COPY(hci_stack->decline_addr, addr); break; } conn->role = HCI_ROLE_SLAVE; conn->state = RECEIVED_CONNECTION_REQUEST; hci_run(); } else { // SYNCHRONOUS CONNECTION LIMIT TO A DEVICE EXCEEDED (0X0A) hci_stack->decline_reason = 0x0a; BD_ADDR_COPY(hci_stack->decline_addr, addr); } break; case HCI_EVENT_CONNECTION_COMPLETE: // Connection management bt_flip_addr(addr, &packet[5]); log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); addr_type = BD_ADDR_TYPE_CLASSIC; conn = hci_connection_for_bd_addr_and_type(&addr, addr_type); if (conn) { if (!packet[2]){ conn->state = OPEN; conn->con_handle = READ_BT_16(packet, 3); conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES; // restart timer run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); run_loop_add_timer(&conn->timeout); log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); hci_emit_nr_connections_changed(); } else { int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED; uint8_t status = packet[2]; bd_addr_t bd_address; memcpy(&bd_address, conn->address, 6); // connection failed, remove entry linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); // notify client if dedicated bonding if (notify_dedicated_bonding_failed){ log_info("hci notify_dedicated_bonding_failed"); hci_emit_dedicated_bonding_result(bd_address, status); } // if authentication error, also delete link key if (packet[2] == 0x05) { hci_drop_link_key_for_bd_addr(&addr); } } } break; case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE: handle = READ_BT_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; if (!packet[2]){ uint8_t * features = &packet[5]; if (features[6] & (1 << 3)){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP; } } conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES; log_info("HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE, bonding flags %x", conn->bonding_flags); if (conn->bonding_flags & BONDING_DEDICATED){ conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; } break; case HCI_EVENT_LINK_KEY_REQUEST: log_info("HCI_EVENT_LINK_KEY_REQUEST"); hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_LINK_KEY_REQUEST); // non-bondable mode: link key negative reply will be sent by HANDLE_LINK_KEY_REQUEST if (hci_stack->bondable && !hci_stack->remote_device_db) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], HANDLE_LINK_KEY_REQUEST); hci_run(); // request handled by hci_run() as HANDLE_LINK_KEY_REQUEST gets set return; case HCI_EVENT_LINK_KEY_NOTIFICATION: { link_key_type_t link_key_type; bt_flip_addr(addr, &packet[2]); conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); if (!conn) break; conn->authentication_flags |= RECV_LINK_KEY_NOTIFICATION; link_key_type = (link_key_type_t)packet[24]; // Change Connection Encryption keeps link key type if (link_key_type != CHANGED_COMBINATION_KEY){ conn->link_key_type = link_key_type; } if (!hci_stack->remote_device_db) break; hci_stack->remote_device_db->put_link_key(&addr, (link_key_t *) &packet[8], conn->link_key_type); // still forward event to allow dismiss of pairing dialog break; } case HCI_EVENT_PIN_CODE_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], LEGACY_PAIRING_ACTIVE); // non-bondable mode: pin code negative reply will be sent if (!hci_stack->bondable){ hci_add_connection_flags_for_flipped_bd_addr(&packet[2], DENY_PIN_CODE_REQUEST); hci_run(); return; } // PIN CODE REQUEST means the link key request didn't succee -> delete stored link key if (!hci_stack->remote_device_db) break; bt_flip_addr(addr, &packet[2]); hci_stack->remote_device_db->delete_link_key(&addr); break; case HCI_EVENT_IO_CAPABILITY_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_IO_CAPABILITIES_REQUEST); hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_REPLY); break; case HCI_EVENT_USER_CONFIRMATION_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); if (!hci_stack->ssp_auto_accept) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_CONFIRM_REPLY); break; case HCI_EVENT_USER_PASSKEY_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); if (!hci_stack->ssp_auto_accept) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_PASSKEY_REPLY); break; case HCI_EVENT_ENCRYPTION_CHANGE: handle = READ_BT_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; if (packet[2] == 0) { if (packet[5]){ conn->authentication_flags |= CONNECTION_ENCRYPTED; } else { conn->authentication_flags &= ~CONNECTION_ENCRYPTED; } } hci_emit_security_level(handle, gap_security_level_for_connection(conn)); break; case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT: handle = READ_BT_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; // dedicated bonding: send result and disconnect if (conn->bonding_flags & BONDING_DEDICATED){ conn->bonding_flags &= ~BONDING_DEDICATED; conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; conn->bonding_status = packet[2]; break; } if (packet[2] == 0 && gap_security_level_for_link_key_type(conn->link_key_type) >= conn->requested_security_level){ // link key sufficient for requested security conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; break; } // not enough hci_emit_security_level(handle, gap_security_level_for_connection(conn)); break; #ifndef EMBEDDED case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE: if (!hci_stack->remote_device_db) break; if (packet[2]) break; // status not ok bt_flip_addr(addr, &packet[3]); // fix for invalid remote names - terminate on 0xff for (i=0; i<248;i++){ if (packet[9+i] == 0xff){ packet[9+i] = 0; break; } } memset(&device_name, 0, sizeof(device_name_t)); strncpy((char*) device_name, (char*) &packet[9], 248); hci_stack->remote_device_db->put_name(&addr, &device_name); break; case HCI_EVENT_INQUIRY_RESULT: case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:{ if (!hci_stack->remote_device_db) break; // first send inq result packet hci_stack->packet_handler(HCI_EVENT_PACKET, packet, size); // then send cached remote names int offset = 3; for (i=0; iremote_device_db->get_name(&addr, &device_name)){ hci_emit_remote_name_cached(&addr, &device_name); } } return; } #endif // HCI_EVENT_DISCONNECTION_COMPLETE // has been moved down, to first notify stack before shutting connection down case HCI_EVENT_HARDWARE_ERROR: if(hci_stack->control && hci_stack->control->hw_error){ (*hci_stack->control->hw_error)(); } else { // if no special requests, just reboot stack hci_power_control_off(); hci_power_control_on(); } break; case HCI_EVENT_ROLE_CHANGE: if (packet[2]) break; // status != 0 handle = READ_BT_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; // no conn conn->role = packet[9]; break; case DAEMON_EVENT_HCI_PACKET_SENT: // release packet buffer only for asynchronous transport and if there are not further fragements if (hci_transport_synchronous()) break; if (hci_stack->acl_fragmentation_total_size) break; hci_release_packet_buffer(); break; #ifdef HAVE_BLE case HCI_EVENT_LE_META: switch (packet[2]){ case HCI_SUBEVENT_LE_ADVERTISING_REPORT: log_info("advertising report received"); if (hci_stack->le_scanning_state != LE_SCANNING) break; le_handle_advertisement_report(packet, size); break; case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: // Connection management bt_flip_addr(addr, &packet[8]); addr_type = (bd_addr_type_t)packet[7]; log_info("LE Connection_complete (status=%u) type %u, %s", packet[3], addr_type, bd_addr_to_str(addr)); // LE connections are auto-accepted, so just create a connection if there isn't one already conn = hci_connection_for_bd_addr_and_type(&addr, addr_type); if (packet[3]){ if (conn){ // outgoing connection failed, remove entry linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); } // if authentication error, also delete link key if (packet[3] == 0x05) { hci_drop_link_key_for_bd_addr(&addr); } break; } if (!conn){ conn = create_connection_for_bd_addr_and_type(addr, addr_type); } if (!conn){ // no memory break; } conn->state = OPEN; conn->con_handle = READ_BT_16(packet, 4); // TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock // restart timer // run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); // run_loop_add_timer(&conn->timeout); log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); hci_emit_nr_connections_changed(); break; // log_info("LE buffer size: %u, count %u", READ_BT_16(packet,6), packet[8]); default: break; } break; #endif default: break; } // handle BT initialization if (hci_stack->state == HCI_STATE_INITIALIZING){ hci_initializing_event_handler(packet, size); } // help with BT sleep if (hci_stack->state == HCI_STATE_FALLING_ASLEEP && hci_stack->substate == 1 && COMMAND_COMPLETE_EVENT(packet, hci_write_scan_enable)){ hci_stack->substate++; } // notify upper stack hci_stack->packet_handler(HCI_EVENT_PACKET, packet, size); // moved here to give upper stack a chance to close down everything with hci_connection_t intact if (packet[0] == HCI_EVENT_DISCONNECTION_COMPLETE){ if (!packet[2]){ hci_connection_t * conn; handle = READ_BT_16(packet, 3); conn = hci_connection_for_handle(handle); if (conn) { uint8_t status = conn->bonding_status; uint16_t flags = conn->bonding_flags; bd_addr_t bd_address; memcpy(&bd_address, conn->address, 6); hci_shutdown_connection(conn); // connection struct is gone, don't access anymore if (flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){ hci_emit_dedicated_bonding_result(bd_address, status); } } } } // execute main loop hci_run(); } static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ hci_dump_packet(packet_type, 1, packet, size); switch (packet_type) { case HCI_EVENT_PACKET: event_handler(packet, size); break; case HCI_ACL_DATA_PACKET: acl_handler(packet, size); break; default: break; } } /** Register HCI packet handlers */ void hci_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ hci_stack->packet_handler = handler; } static void hci_state_reset(){ // no connections yet hci_stack->connections = NULL; // keep discoverable/connectable as this has been requested by the client(s) // hci_stack->discoverable = 0; // hci_stack->connectable = 0; // hci_stack->bondable = 1; // buffer is free hci_stack->hci_packet_buffer_reserved = 0; // no pending cmds hci_stack->decline_reason = 0; hci_stack->new_scan_enable_value = 0xff; // LE hci_stack->adv_addr_type = 0; memset(hci_stack->adv_address, 0, 6); hci_stack->le_scanning_state = LE_SCAN_IDLE; hci_stack->le_scan_type = 0xff; hci_stack->le_connection_parameter_range.le_conn_interval_min = 0x0006; hci_stack->le_connection_parameter_range.le_conn_interval_max = 0x0C80; hci_stack->le_connection_parameter_range.le_conn_latency_min = 0x0000; hci_stack->le_connection_parameter_range.le_conn_latency_max = 0x03E8; hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 0x000A; hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 0x0C80; } void hci_init(const hci_transport_t *transport, void *config, bt_control_t *control, remote_device_db_t const* remote_device_db){ #ifdef HAVE_MALLOC if (!hci_stack) { hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t)); } #else hci_stack = &hci_stack_static; #endif memset(hci_stack, 0, sizeof(hci_stack_t)); // reference to use transport layer implementation hci_stack->hci_transport = transport; // references to used control implementation hci_stack->control = control; // reference to used config hci_stack->config = config; // higher level handler hci_stack->packet_handler = dummy_handler; // store and open remote device db hci_stack->remote_device_db = remote_device_db; if (hci_stack->remote_device_db) { hci_stack->remote_device_db->open(); } // max acl payload size defined in config.h hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; // register packet handlers with transport transport->register_packet_handler(&packet_handler); hci_stack->state = HCI_STATE_OFF; // class of device hci_stack->class_of_device = 0x007a020c; // Smartphone // bondable by default hci_stack->bondable = 1; // Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept hci_stack->ssp_enable = 1; hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT; hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; hci_stack->ssp_auto_accept = 1; hci_state_reset(); } void hci_close(){ // close remote device db if (hci_stack->remote_device_db) { hci_stack->remote_device_db->close(); } while (hci_stack->connections) { // cancel all l2cap connections hci_emit_disconnection_complete(((hci_connection_t *) hci_stack->connections)->con_handle, 0x16); // terminated by local host hci_shutdown_connection((hci_connection_t *) hci_stack->connections); } hci_power_control(HCI_POWER_OFF); #ifdef HAVE_MALLOC free(hci_stack); #endif hci_stack = NULL; } void hci_set_class_of_device(uint32_t class_of_device){ hci_stack->class_of_device = class_of_device; } void hci_disable_l2cap_timeout_check(){ disable_l2cap_timeouts = 1; } // State-Module-Driver overview // state module low-level // HCI_STATE_OFF off close // HCI_STATE_INITIALIZING, on open // HCI_STATE_WORKING, on open // HCI_STATE_HALTING, on open // HCI_STATE_SLEEPING, off/sleep close // HCI_STATE_FALLING_ASLEEP on open static int hci_power_control_on(void){ // power on int err = 0; if (hci_stack->control && hci_stack->control->on){ err = (*hci_stack->control->on)(hci_stack->config); } if (err){ log_error( "POWER_ON failed"); hci_emit_hci_open_failed(); return err; } // open low-level device err = hci_stack->hci_transport->open(hci_stack->config); if (err){ log_error( "HCI_INIT failed, turning Bluetooth off again"); if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(hci_stack->config); } hci_emit_hci_open_failed(); return err; } return 0; } static void hci_power_control_off(void){ log_info("hci_power_control_off"); // close low-level device hci_stack->hci_transport->close(hci_stack->config); log_info("hci_power_control_off - hci_transport closed"); // power off if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(hci_stack->config); } log_info("hci_power_control_off - control closed"); hci_stack->state = HCI_STATE_OFF; } static void hci_power_control_sleep(void){ log_info("hci_power_control_sleep"); #if 0 // don't close serial port during sleep // close low-level device hci_stack->hci_transport->close(hci_stack->config); #endif // sleep mode if (hci_stack->control && hci_stack->control->sleep){ (*hci_stack->control->sleep)(hci_stack->config); } hci_stack->state = HCI_STATE_SLEEPING; } static int hci_power_control_wake(void){ log_info("hci_power_control_wake"); // wake on if (hci_stack->control && hci_stack->control->wake){ (*hci_stack->control->wake)(hci_stack->config); } #if 0 // open low-level device int err = hci_stack->hci_transport->open(hci_stack->config); if (err){ log_error( "HCI_INIT failed, turning Bluetooth off again"); if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(hci_stack->config); } hci_emit_hci_open_failed(); return err; } #endif return 0; } static void hci_power_transition_to_initializing(void){ // set up state machine hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent hci_stack->hci_packet_buffer_reserved = 0; hci_stack->state = HCI_STATE_INITIALIZING; hci_stack->substate = 0; } int hci_power_control(HCI_POWER_MODE power_mode){ int err; log_info("hci_power_control: %u, current mode %u", power_mode, hci_stack->state); err = 0; switch (hci_stack->state){ case HCI_STATE_OFF: switch (power_mode){ case HCI_POWER_ON: err = hci_power_control_on(); if (err) { log_error("hci_power_control_on() error %u", err); return err; } hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: // do nothing break; case HCI_POWER_SLEEP: // do nothing (with SLEEP == OFF) break; } break; case HCI_STATE_INITIALIZING: switch (power_mode){ case HCI_POWER_ON: // do nothing break; case HCI_POWER_OFF: // no connections yet, just turn it off hci_power_control_off(); break; case HCI_POWER_SLEEP: // no connections yet, just turn it off hci_power_control_sleep(); break; } break; case HCI_STATE_WORKING: switch (power_mode){ case HCI_POWER_ON: // do nothing break; case HCI_POWER_OFF: // see hci_run hci_stack->state = HCI_STATE_HALTING; break; case HCI_POWER_SLEEP: // see hci_run hci_stack->state = HCI_STATE_FALLING_ASLEEP; hci_stack->substate = 0; break; } break; case HCI_STATE_HALTING: switch (power_mode){ case HCI_POWER_ON: hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: // do nothing break; case HCI_POWER_SLEEP: // see hci_run hci_stack->state = HCI_STATE_FALLING_ASLEEP; hci_stack->substate = 0; break; } break; case HCI_STATE_FALLING_ASLEEP: switch (power_mode){ case HCI_POWER_ON: #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) // nothing to do, if H4 supports power management if (bt_control_iphone_power_management_enabled()){ hci_stack->state = HCI_STATE_INITIALIZING; hci_stack->substate = HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP; break; } #endif hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: // see hci_run hci_stack->state = HCI_STATE_HALTING; break; case HCI_POWER_SLEEP: // do nothing break; } break; case HCI_STATE_SLEEPING: switch (power_mode){ case HCI_POWER_ON: #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) // nothing to do, if H4 supports power management if (bt_control_iphone_power_management_enabled()){ hci_stack->state = HCI_STATE_INITIALIZING; hci_stack->substate = HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP; hci_update_scan_enable(); break; } #endif err = hci_power_control_wake(); if (err) return err; hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: hci_stack->state = HCI_STATE_HALTING; break; case HCI_POWER_SLEEP: // do nothing break; } break; } // create internal event hci_emit_state(); // trigger next/first action hci_run(); return 0; } static void hci_update_scan_enable(void){ // 2 = page scan, 1 = inq scan hci_stack->new_scan_enable_value = hci_stack->connectable << 1 | hci_stack->discoverable; hci_run(); } void hci_discoverable_control(uint8_t enable){ if (enable) enable = 1; // normalize argument if (hci_stack->discoverable == enable){ hci_emit_discoverable_enabled(hci_stack->discoverable); return; } hci_stack->discoverable = enable; hci_update_scan_enable(); } void hci_connectable_control(uint8_t enable){ if (enable) enable = 1; // normalize argument // don't emit event if (hci_stack->connectable == enable) return; hci_stack->connectable = enable; hci_update_scan_enable(); } bd_addr_t * hci_local_bd_addr(void){ return &hci_stack->local_bd_addr; } void hci_run(){ hci_connection_t * connection; linked_item_t * it; // send continuation fragments first, as they block the prepared packet buffer if (hci_stack->acl_fragmentation_total_size > 0) { hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer); if (hci_can_send_prepared_acl_packet_now(con_handle)){ hci_connection_t *connection = hci_connection_for_handle(con_handle); if (connection) { hci_send_acl_packet_fragments(connection); return; } // connection gone -> discard further fragments hci_stack->acl_fragmentation_total_size = 0; hci_stack->acl_fragmentation_pos = 0; } } if (!hci_can_send_command_packet_now()) return; // global/non-connection oriented commands // decline incoming connections if (hci_stack->decline_reason){ uint8_t reason = hci_stack->decline_reason; hci_stack->decline_reason = 0; hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason); return; } // send scan enable if (hci_stack->state == HCI_STATE_WORKING && hci_stack->new_scan_enable_value != 0xff && hci_classic_supported()){ hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value); hci_stack->new_scan_enable_value = 0xff; return; } #ifdef HAVE_BLE // handle le scan if (hci_stack->state == HCI_STATE_WORKING){ switch(hci_stack->le_scanning_state){ case LE_START_SCAN: hci_stack->le_scanning_state = LE_SCANNING; hci_send_cmd(&hci_le_set_scan_enable, 1, 0); return; case LE_STOP_SCAN: hci_stack->le_scanning_state = LE_SCAN_IDLE; hci_send_cmd(&hci_le_set_scan_enable, 0, 0); return; default: break; } if (hci_stack->le_scan_type != 0xff){ // defaults: active scanning, accept all advertisement packets int scan_type = hci_stack->le_scan_type; hci_stack->le_scan_type = 0xff; hci_send_cmd(&hci_le_set_scan_parameters, scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->adv_addr_type, 0); return; } } #endif // send pending HCI commands for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ connection = (hci_connection_t *) it; switch(connection->state){ case SEND_CREATE_CONNECTION: switch(connection->address_type){ case BD_ADDR_TYPE_CLASSIC: log_info("sending hci_create_connection"); hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, 1); break; default: #ifdef HAVE_BLE log_info("sending hci_le_create_connection"); hci_send_cmd(&hci_le_create_connection, 0x0060, // scan interval: 60 ms 0x0030, // scan interval: 30 ms 0, // don't use whitelist connection->address_type, // peer address type connection->address, // peer bd addr hci_stack->adv_addr_type, // our addr type: 0x0008, // conn interval min 0x0018, // conn interval max 0, // conn latency 0x0048, // supervision timeout 0x0001, // min ce length 0x0001 // max ce length ); connection->state = SENT_CREATE_CONNECTION; #endif break; } return; case RECEIVED_CONNECTION_REQUEST: log_info("sending hci_accept_connection_request"); connection->state = ACCEPTED_CONNECTION_REQUEST; hci_send_cmd(&hci_accept_connection_request, connection->address, 1); return; #ifdef HAVE_BLE case SEND_CANCEL_CONNECTION: connection->state = SENT_CANCEL_CONNECTION; hci_send_cmd(&hci_le_create_connection_cancel); return; #endif case SEND_DISCONNECT: connection->state = SENT_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection return; default: break; } if (connection->authentication_flags & HANDLE_LINK_KEY_REQUEST){ link_key_t link_key; link_key_type_t link_key_type; log_info("responding to link key request"); connectionClearAuthenticationFlags(connection, HANDLE_LINK_KEY_REQUEST); if ( hci_stack->remote_device_db && hci_stack->remote_device_db->get_link_key( &connection->address, &link_key, &link_key_type) && gap_security_level_for_link_key_type(link_key_type) >= connection->requested_security_level){ connection->link_key_type = link_key_type; hci_send_cmd(&hci_link_key_request_reply, connection->address, &link_key); } else { hci_send_cmd(&hci_link_key_request_negative_reply, connection->address); } return; } if (connection->authentication_flags & DENY_PIN_CODE_REQUEST){ log_info("denying to pin request"); connectionClearAuthenticationFlags(connection, DENY_PIN_CODE_REQUEST); hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address); return; } if (connection->authentication_flags & SEND_IO_CAPABILITIES_REPLY){ connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_REPLY); log_info("IO Capability Request received, stack bondable %u, io cap %u", hci_stack->bondable, hci_stack->ssp_io_capability); if (hci_stack->bondable && (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN)){ // tweak authentication requirements uint8_t authreq = hci_stack->ssp_authentication_requirement; if (connection->bonding_flags & BONDING_DEDICATED){ authreq = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; } if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){ authreq |= 1; } hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, NULL, authreq); } else { hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED); } return; } if (connection->authentication_flags & SEND_USER_CONFIRM_REPLY){ connectionClearAuthenticationFlags(connection, SEND_USER_CONFIRM_REPLY); hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address); return; } if (connection->authentication_flags & SEND_USER_PASSKEY_REPLY){ connectionClearAuthenticationFlags(connection, SEND_USER_PASSKEY_REPLY); hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000); return; } if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES){ connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES; hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle); return; } if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){ connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK; hci_send_cmd(&hci_disconnect, connection->con_handle, 0x0005); // authentication failure return; } if (connection->bonding_flags & BONDING_DISCONNECT_DEDICATED_DONE){ connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE; connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // authentication done return; } if (connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST){ connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST; hci_send_cmd(&hci_authentication_requested, connection->con_handle); return; } if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){ connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST; hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1); return; } #ifdef HAVE_BLE if (connection->le_con_parameter_update_state == CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS){ connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; uint16_t connection_interval_min = connection->le_conn_interval_min; connection->le_conn_interval_min = 0; hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection_interval_min, connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, 0x0000, 0xffff); } #endif } switch (hci_stack->state){ case HCI_STATE_INITIALIZING: hci_initializing_state_machine(); break; case HCI_STATE_HALTING: log_info("HCI_STATE_HALTING"); // close all open connections connection = (hci_connection_t *) hci_stack->connections; if (connection){ // send disconnect if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_HALTING, connection %p, handle %u", connection, (uint16_t)connection->con_handle); hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection // send disconnected event right away - causes higher layer connections to get closed, too. hci_shutdown_connection(connection); return; } log_info("HCI_STATE_HALTING, calling off"); // switch mode hci_power_control_off(); log_info("HCI_STATE_HALTING, emitting state"); hci_emit_state(); log_info("HCI_STATE_HALTING, done"); break; case HCI_STATE_FALLING_ASLEEP: switch(hci_stack->substate) { case 0: log_info("HCI_STATE_FALLING_ASLEEP"); // close all open connections connection = (hci_connection_t *) hci_stack->connections; #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) // don't close connections, if H4 supports power management if (bt_control_iphone_power_management_enabled()){ connection = NULL; } #endif if (connection){ // send disconnect if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", connection, (uint16_t)connection->con_handle); hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection // send disconnected event right away - causes higher layer connections to get closed, too. hci_shutdown_connection(connection); return; } if (hci_classic_supported()){ // disable page and inquiry scan if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_HALTING, disabling inq scans"); hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan // continue in next sub state hci_stack->substate++; break; } // fall through for ble-only chips case 2: log_info("HCI_STATE_HALTING, calling sleep"); #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) // don't actually go to sleep, if H4 supports power management if (bt_control_iphone_power_management_enabled()){ // SLEEP MODE reached hci_stack->state = HCI_STATE_SLEEPING; hci_emit_state(); break; } #endif // switch mode hci_power_control_sleep(); // changes hci_stack->state to SLEEP hci_emit_state(); break; default: break; } break; default: break; } } int hci_send_cmd_packet(uint8_t *packet, int size){ bd_addr_t addr; hci_connection_t * conn; int err; // house-keeping // create_connection? if (IS_COMMAND(packet, hci_create_connection)){ bt_flip_addr(addr, &packet[3]); log_info("Create_connection to %s", bd_addr_to_str(addr)); conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); if (!conn){ conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (!conn){ // notify client that alloc failed hci_emit_connection_complete(conn, BTSTACK_MEMORY_ALLOC_FAILED); return 0; // don't sent packet to controller } conn->state = SEND_CREATE_CONNECTION; } log_info("conn state %u", conn->state); switch (conn->state){ // if connection active exists case OPEN: // and OPEN, emit connection complete command, don't send to controller hci_emit_connection_complete(conn, 0); return 0; case SEND_CREATE_CONNECTION: // connection created by hci, e.g. dedicated bonding break; default: // otherwise, just ignore as it is already in the open process return 0; } conn->state = SENT_CREATE_CONNECTION; } if (IS_COMMAND(packet, hci_link_key_request_reply)){ hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_REPLY); } if (IS_COMMAND(packet, hci_link_key_request_negative_reply)){ hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_NEGATIVE_REQUEST); } if (IS_COMMAND(packet, hci_delete_stored_link_key)){ if (hci_stack->remote_device_db){ bt_flip_addr(addr, &packet[3]); hci_stack->remote_device_db->delete_link_key(&addr); } } if (IS_COMMAND(packet, hci_pin_code_request_negative_reply) || IS_COMMAND(packet, hci_pin_code_request_reply)){ bt_flip_addr(addr, &packet[3]); conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); if (conn){ connectionClearAuthenticationFlags(conn, LEGACY_PAIRING_ACTIVE); } } if (IS_COMMAND(packet, hci_user_confirmation_request_negative_reply) || IS_COMMAND(packet, hci_user_confirmation_request_reply) || IS_COMMAND(packet, hci_user_passkey_request_negative_reply) || IS_COMMAND(packet, hci_user_passkey_request_reply)) { bt_flip_addr(addr, &packet[3]); conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); if (conn){ connectionClearAuthenticationFlags(conn, SSP_PAIRING_ACTIVE); } } #ifdef HAVE_BLE if (IS_COMMAND(packet, hci_le_set_advertising_parameters)){ hci_stack->adv_addr_type = packet[8]; } if (IS_COMMAND(packet, hci_le_set_random_address)){ bt_flip_addr(hci_stack->adv_address, &packet[3]); } #endif hci_stack->num_cmd_packets--; hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); // release packet buffer for synchronous transport implementations if (hci_transport_synchronous() && (packet == hci_stack->hci_packet_buffer)){ hci_stack->hci_packet_buffer_reserved = 0; } return err; } // disconnect because of security block void hci_disconnect_security_block(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return; connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; } // Configure Secure Simple Pairing // enable will enable SSP during init void hci_ssp_set_enable(int enable){ hci_stack->ssp_enable = enable; } int hci_local_ssp_activated(){ return hci_ssp_supported() && hci_stack->ssp_enable; } // if set, BTstack will respond to io capability request using authentication requirement void hci_ssp_set_io_capability(int io_capability){ hci_stack->ssp_io_capability = io_capability; } void hci_ssp_set_authentication_requirement(int authentication_requirement){ hci_stack->ssp_authentication_requirement = authentication_requirement; } // if set, BTstack will confirm a numberic comparion and enter '000000' if requested void hci_ssp_set_auto_accept(int auto_accept){ hci_stack->ssp_auto_accept = auto_accept; } /** * pre: numcmds >= 0 - it's allowed to send a command to the controller */ int hci_send_cmd(const hci_cmd_t *cmd, ...){ uint8_t * packet; va_list argptr; uint16_t size; if (!hci_can_send_command_packet_now()){ log_error("hci_send_cmd called but cannot send packet now"); return 0; } // for HCI INITIALIZATION // log_info("hci_send_cmd: opcode %04x", cmd->opcode); hci_stack->last_cmd_opcode = cmd->opcode; hci_reserve_packet_buffer(); packet = hci_stack->hci_packet_buffer; va_start(argptr, cmd); size = hci_create_cmd_internal(packet, cmd, argptr); va_end(argptr); return hci_send_cmd_packet(packet, size); } // Create various non-HCI events. // TODO: generalize, use table similar to hci_create_command void hci_emit_state(){ uint8_t event[3]; log_info("BTSTACK_EVENT_STATE %u", hci_stack->state); event[0] = BTSTACK_EVENT_STATE; event[1] = sizeof(event) - 2; event[2] = hci_stack->state; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_connection_complete(hci_connection_t *conn, uint8_t status){ uint8_t event[13]; event[0] = HCI_EVENT_CONNECTION_COMPLETE; event[1] = sizeof(event) - 2; event[2] = status; bt_store_16(event, 3, conn->con_handle); bt_flip_addr(&event[5], conn->address); event[11] = 1; // ACL connection event[12] = 0; // encryption disabled hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_le_connection_complete(uint8_t address_type, bd_addr_t * address, uint16_t conn_handle, uint8_t status){ uint8_t event[21]; event[0] = HCI_EVENT_LE_META; event[1] = sizeof(event) - 2; event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE; event[3] = status; bt_store_16(event, 4, conn_handle); event[6] = 0; // TODO: role event[7] = address_type; bt_flip_addr(&event[8], *address); bt_store_16(event, 14, 0); // interval bt_store_16(event, 16, 0); // latency bt_store_16(event, 18, 0); // supervision timeout event[20] = 0; // master clock accuracy hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_disconnection_complete(uint16_t handle, uint8_t reason){ uint8_t event[6]; event[0] = HCI_EVENT_DISCONNECTION_COMPLETE; event[1] = sizeof(event) - 2; event[2] = 0; // status = OK bt_store_16(event, 3, handle); event[5] = reason; hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ uint8_t event[4]; if (disable_l2cap_timeouts) return; log_info("L2CAP_EVENT_TIMEOUT_CHECK"); event[0] = L2CAP_EVENT_TIMEOUT_CHECK; event[1] = sizeof(event) - 2; bt_store_16(event, 2, conn->con_handle); hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_nr_connections_changed(){ uint8_t event[3]; log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections()); event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; event[1] = sizeof(event) - 2; event[2] = nr_hci_connections(); hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_hci_open_failed(){ uint8_t event[2]; log_info("BTSTACK_EVENT_POWERON_FAILED"); event[0] = BTSTACK_EVENT_POWERON_FAILED; event[1] = sizeof(event) - 2; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } #ifndef EMBEDDED void hci_emit_btstack_version() { uint8_t event[6]; log_info("BTSTACK_EVENT_VERSION %u.%u", BTSTACK_MAJOR, BTSTACK_MINOR); event[0] = BTSTACK_EVENT_VERSION; event[1] = sizeof(event) - 2; event[2] = BTSTACK_MAJOR; event[3] = BTSTACK_MINOR; bt_store_16(event, 4, BTSTACK_REVISION); hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } #endif void hci_emit_system_bluetooth_enabled(uint8_t enabled){ uint8_t event[3]; log_info("BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED %u", enabled); event[0] = BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED; event[1] = sizeof(event) - 2; event[2] = enabled; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_remote_name_cached(bd_addr_t *addr, device_name_t *name){ uint8_t event[2+1+6+248+1]; // +1 for \0 in log_info event[0] = BTSTACK_EVENT_REMOTE_NAME_CACHED; event[1] = sizeof(event) - 2 - 1; event[2] = 0; // just to be compatible with HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE bt_flip_addr(&event[3], *addr); memcpy(&event[9], name, 248); event[9+248] = 0; // assert \0 for log_info log_info("BTSTACK_EVENT_REMOTE_NAME_CACHED %s = '%s'", bd_addr_to_str(*addr), &event[9]); hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)-1); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)-1); } void hci_emit_discoverable_enabled(uint8_t enabled){ uint8_t event[3]; log_info("BTSTACK_EVENT_DISCOVERABLE_ENABLED %u", enabled); event[0] = BTSTACK_EVENT_DISCOVERABLE_ENABLED; event[1] = sizeof(event) - 2; event[2] = enabled; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){ uint8_t event[5]; int pos; log_info("hci_emit_security_level %u for handle %x", level, con_handle); pos = 0; event[pos++] = GAP_SECURITY_LEVEL; event[pos++] = sizeof(event) - 2; bt_store_16(event, 2, con_handle); pos += 2; event[pos++] = level; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){ uint8_t event[9]; int pos; log_info("hci_emit_dedicated_bonding_result %u ", status); pos = 0; event[pos++] = GAP_DEDICATED_BONDING_COMPLETED; event[pos++] = sizeof(event) - 2; event[pos++] = status; bt_flip_addr( * (bd_addr_t *) &event[pos], address); pos += 6; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); } // query if remote side supports SSP int hci_remote_ssp_supported(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return 0; return (connection->bonding_flags & BONDING_REMOTE_SUPPORTS_SSP) ? 1 : 0; } int hci_ssp_supported_on_both_sides(hci_con_handle_t handle){ return hci_local_ssp_activated() && hci_remote_ssp_supported(handle); } // GAP API /** * @bbrief enable/disable bonding. default is enabled * @praram enabled */ void gap_set_bondable_mode(int enable){ hci_stack->bondable = enable ? 1 : 0; } /** * @brief map link keys to security levels */ gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){ switch (link_key_type){ case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: return LEVEL_4; case COMBINATION_KEY: case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: return LEVEL_3; default: return LEVEL_2; } } static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){ if (!connection) return LEVEL_0; if ((connection->authentication_flags & CONNECTION_ENCRYPTED) == 0) return LEVEL_0; return gap_security_level_for_link_key_type(connection->link_key_type); } int gap_mitm_protection_required_for_security_level(gap_security_level_t level){ log_info("gap_mitm_protection_required_for_security_level %u", level); return level > LEVEL_2; } /** * @brief get current security level */ gap_security_level_t gap_security_level(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return LEVEL_0; return gap_security_level_for_connection(connection); } /** * @brief request connection to device to * @result GAP_AUTHENTICATION_RESULT */ void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){ hci_connection_t * connection = hci_connection_for_handle(con_handle); gap_security_level_t current_level; if (!connection){ hci_emit_security_level(con_handle, LEVEL_0); return; } current_level = gap_security_level(con_handle); log_info("gap_request_security_level %u, current level %u", requested_level, current_level); if (current_level >= requested_level){ hci_emit_security_level(con_handle, current_level); return; } connection->requested_security_level = requested_level; #if 0 // sending encryption request without a link key results in an error. // TODO: figure out how to use it properly // would enabling ecnryption suffice (>= LEVEL_2)? if (hci_stack->remote_device_db){ link_key_type_t link_key_type; link_key_t link_key; if (hci_stack->remote_device_db->get_link_key( &connection->address, &link_key, &link_key_type)){ if (gap_security_level_for_link_key_type(link_key_type) >= requested_level){ connection->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; return; } } } #endif // try to authenticate connection connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; hci_run(); } /** * @brief start dedicated bonding with device. disconnect after bonding * @param device * @param request MITM protection * @result GAP_DEDICATED_BONDING_COMPLETE */ int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){ // create connection state machine hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_CLASSIC); if (!connection){ return BTSTACK_MEMORY_ALLOC_FAILED; } // delete linkn key hci_drop_link_key_for_bd_addr( (bd_addr_t *) &device); // configure LEVEL_2/3, dedicated bonding connection->state = SEND_CREATE_CONNECTION; connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2; log_info("gap_dedicated_bonding, mitm %u -> level %u", mitm_protection_required, connection->requested_security_level); connection->bonding_flags = BONDING_DEDICATED; // wait for GAP Security Result and send GAP Dedicated Bonding complete // handle: connnection failure (connection complete != ok) // handle: authentication failure // handle: disconnect on done hci_run(); return 0; } void gap_set_local_name(const char * local_name){ hci_stack->local_name = local_name; } le_command_status_t le_central_start_scan(){ if (hci_stack->le_scanning_state == LE_SCANNING) return BLE_PERIPHERAL_OK; hci_stack->le_scanning_state = LE_START_SCAN; hci_run(); return BLE_PERIPHERAL_OK; } le_command_status_t le_central_stop_scan(){ if ( hci_stack->le_scanning_state == LE_SCAN_IDLE) return BLE_PERIPHERAL_OK; hci_stack->le_scanning_state = LE_STOP_SCAN; hci_run(); return BLE_PERIPHERAL_OK; } void le_central_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){ hci_stack->le_scan_type = scan_type; hci_stack->le_scan_interval = scan_interval; hci_stack->le_scan_window = scan_window; hci_run(); } le_command_status_t le_central_connect(bd_addr_t * addr, bd_addr_type_t addr_type){ hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (!conn){ log_info("le_central_connect: no connection exists yet, creating context"); conn = create_connection_for_bd_addr_and_type(*addr, addr_type); if (!conn){ // notify client that alloc failed hci_emit_le_connection_complete(addr_type, addr, 0, BTSTACK_MEMORY_ALLOC_FAILED); log_info("le_central_connect: failed to alloc hci_connection_t"); return BLE_PERIPHERAL_NOT_CONNECTED; // don't sent packet to controller } conn->state = SEND_CREATE_CONNECTION; log_info("le_central_connect: send create connection next"); hci_run(); return BLE_PERIPHERAL_OK; } if (!hci_is_le_connection(conn) || conn->state == SEND_CREATE_CONNECTION || conn->state == SENT_CREATE_CONNECTION) { hci_emit_le_connection_complete(conn->address_type, &conn->address, 0, ERROR_CODE_COMMAND_DISALLOWED); log_error("le_central_connect: classic connection or connect is already being created"); return BLE_PERIPHERAL_IN_WRONG_STATE; } log_info("le_central_connect: context exists with state %u", conn->state); hci_emit_le_connection_complete(conn->address_type, &conn->address, conn->con_handle, 0); hci_run(); return BLE_PERIPHERAL_OK; } // @assumption: only a single outgoing LE Connection exists static hci_connection_t * le_central_get_outgoing_connection(){ linked_item_t *it; for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * conn = (hci_connection_t *) it; if (!hci_is_le_connection(conn)) continue; switch (conn->state){ case SEND_CREATE_CONNECTION: case SENT_CREATE_CONNECTION: return conn; default: break; }; } return NULL; } le_command_status_t le_central_connect_cancel(){ hci_connection_t * conn = le_central_get_outgoing_connection(); switch (conn->state){ case SEND_CREATE_CONNECTION: // skip sending create connection and emit event instead hci_emit_le_connection_complete(conn->address_type, &conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER); linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); break; case SENT_CREATE_CONNECTION: // request to send cancel connection conn->state = SEND_CANCEL_CONNECTION; hci_run(); break; default: break; } return BLE_PERIPHERAL_OK; } /** * @brief Updates the connection parameters for a given LE connection * @param handle * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @returns 0 if ok */ int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; connection->le_conn_interval_min = conn_interval_min; connection->le_conn_interval_max = conn_interval_max; connection->le_conn_latency = conn_latency; connection->le_supervision_timeout = supervision_timeout; return 0; } le_command_status_t gap_disconnect(hci_con_handle_t handle){ hci_connection_t * conn = hci_connection_for_handle(handle); if (!conn){ hci_emit_disconnection_complete(handle, 0); return BLE_PERIPHERAL_OK; } conn->state = SEND_DISCONNECT; hci_run(); return BLE_PERIPHERAL_OK; } void hci_disconnect_all(){ linked_list_iterator_t it; linked_list_iterator_init(&it, &hci_stack->connections); while (linked_list_iterator_has_next(&it)){ hci_connection_t * con = (hci_connection_t*) linked_list_iterator_next(&it); if (con->state == SENT_DISCONNECT) continue; con->state = SEND_DISCONNECT; } hci_run(); }