/* mbed Microcontroller Library * Copyright (c) 2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "hal/ticker_api.h" #include "platform/mbed_critical.h" #include "platform/mbed_assert.h" static void schedule_interrupt(const ticker_data_t *const ticker); static void update_present_time(const ticker_data_t *const ticker); /* * Initialize a ticker instance. */ static void initialize(const ticker_data_t *ticker) { // return if the queue has already been initialized, in that case the // interface used by the queue is already initialized. if (ticker->queue->initialized) { return; } if (ticker->queue->suspended) { return; } ticker->interface->init(); const ticker_info_t *info = ticker->interface->get_info(); uint32_t frequency = info->frequency; if (info->frequency == 0) { MBED_ASSERT(0); frequency = 1000000; } uint8_t frequency_shifts = 0; for (uint8_t i = 31; i > 0; --i) { if ((1 << i) == frequency) { frequency_shifts = i; break; } } uint32_t bits = info->bits; if ((info->bits > 32) || (info->bits < 4)) { MBED_ASSERT(0); bits = 32; } uint32_t max_delta = 0x7 << (bits - 4); // 7/16th uint64_t max_delta_us = ((uint64_t)max_delta * 1000000 + frequency - 1) / frequency; ticker->queue->event_handler = NULL; ticker->queue->head = NULL; ticker->queue->tick_last_read = ticker->interface->read(); ticker->queue->tick_remainder = 0; ticker->queue->frequency = frequency; ticker->queue->frequency_shifts = frequency_shifts; ticker->queue->bitmask = ((uint64_t)1 << bits) - 1; ticker->queue->max_delta = max_delta; ticker->queue->max_delta_us = max_delta_us; ticker->queue->present_time = 0; ticker->queue->dispatching = false; ticker->queue->suspended = false; ticker->queue->initialized = true; update_present_time(ticker); schedule_interrupt(ticker); } /** * Set the event handler function of a ticker instance. */ static void set_handler(const ticker_data_t *const ticker, ticker_event_handler handler) { ticker->queue->event_handler = handler; } /* * Convert a 32 bit timestamp into a 64 bit timestamp. * * A 64 bit timestamp is used as the point of time of reference while the * timestamp to convert is relative to this point of time. * * The lower 32 bits of the timestamp returned will be equal to the timestamp to * convert. * * If the timestamp to convert is less than the lower 32 bits of the time * reference then the timestamp to convert is seen as an overflowed value and * the upper 32 bit of the timestamp returned will be equal to the upper 32 bit * of the reference point + 1. * Otherwise, the upper 32 bit returned will be equal to the upper 32 bit of the * reference point. * * @param ref: The 64 bit timestamp of reference. * @param timestamp: The timestamp to convert. */ static us_timestamp_t convert_timestamp(us_timestamp_t ref, timestamp_t timestamp) { bool overflow = timestamp < ((timestamp_t) ref) ? true : false; us_timestamp_t result = (ref & ~((us_timestamp_t)UINT32_MAX)) | timestamp; if (overflow) { result += (1ULL << 32); } return result; } /** * Update the present timestamp value of a ticker. */ static void update_present_time(const ticker_data_t *const ticker) { ticker_event_queue_t *queue = ticker->queue; if (queue->suspended) { return; } uint32_t ticker_time = ticker->interface->read(); if (ticker_time == ticker->queue->tick_last_read) { // No work to do return; } uint64_t elapsed_ticks = (ticker_time - queue->tick_last_read) & queue->bitmask; queue->tick_last_read = ticker_time; uint64_t elapsed_us; if (1000000 == queue->frequency) { // Optimized for 1MHz elapsed_us = elapsed_ticks; } else if (0 != queue->frequency_shifts) { // Optimized for frequencies divisible by 2 uint64_t us_x_ticks = elapsed_ticks * 1000000; elapsed_us = us_x_ticks >> queue->frequency_shifts; // Update remainder queue->tick_remainder += us_x_ticks - (elapsed_us << queue->frequency_shifts); if (queue->tick_remainder >= queue->frequency) { elapsed_us += 1; queue->tick_remainder -= queue->frequency; } } else { // General case uint64_t us_x_ticks = elapsed_ticks * 1000000; elapsed_us = us_x_ticks / queue->frequency; // Update remainder queue->tick_remainder += us_x_ticks - elapsed_us * queue->frequency; if (queue->tick_remainder >= queue->frequency) { elapsed_us += 1; queue->tick_remainder -= queue->frequency; } } // Update current time queue->present_time += elapsed_us; } /** * Given the absolute timestamp compute the hal tick timestamp rounded up. */ static timestamp_t compute_tick_round_up(const ticker_data_t *const ticker, us_timestamp_t timestamp) { ticker_event_queue_t *queue = ticker->queue; us_timestamp_t delta_us = timestamp - queue->present_time; timestamp_t delta = ticker->queue->max_delta; if (delta_us <= ticker->queue->max_delta_us) { // Checking max_delta_us ensures the operation will not overflow if (1000000 == queue->frequency) { // Optimized for 1MHz delta = delta_us; if (delta > ticker->queue->max_delta) { delta = ticker->queue->max_delta; } } else if (0 != queue->frequency_shifts) { // Optimized frequencies divisible by 2 delta = ((delta_us << ticker->queue->frequency_shifts) + 1000000 - 1) / 1000000; if (delta > ticker->queue->max_delta) { delta = ticker->queue->max_delta; } } else { // General case delta = (delta_us * queue->frequency + 1000000 - 1) / 1000000; if (delta > ticker->queue->max_delta) { delta = ticker->queue->max_delta; } } } return (queue->tick_last_read + delta) & queue->bitmask; } /** * Return 1 if the tick has incremented to or past match_tick, otherwise 0. */ int _ticker_match_interval_passed(timestamp_t prev_tick, timestamp_t cur_tick, timestamp_t match_tick) { if (match_tick > prev_tick) { return (cur_tick >= match_tick) || (cur_tick < prev_tick); } else { return (cur_tick < prev_tick) && (cur_tick >= match_tick); } } /** * Compute the time when the interrupt has to be triggered and schedule it. * * If there is no event in the queue or the next event to execute is in more * than ticker.queue.max_delta ticks from now then the ticker irq will be * scheduled in ticker.queue.max_delta ticks. Otherwise the irq will be * scheduled to happen when the running counter reach the timestamp of the * first event in the queue. * * @note If there is no event in the queue then the interrupt is scheduled to * in ticker.queue.max_delta. This is necessary to keep track * of the timer overflow. */ static void schedule_interrupt(const ticker_data_t *const ticker) { ticker_event_queue_t *queue = ticker->queue; if (queue->suspended || ticker->queue->dispatching) { // Don't schedule the next interrupt until dispatching is // finished. This prevents repeated calls to interface->set_interrupt return; } update_present_time(ticker); if (ticker->queue->head) { us_timestamp_t present = ticker->queue->present_time; us_timestamp_t match_time = ticker->queue->head->timestamp; // if the event at the head of the queue is in the past then schedule // it immediately. if (match_time <= present) { ticker->interface->fire_interrupt(); return; } timestamp_t match_tick = compute_tick_round_up(ticker, match_time); // The same tick should never occur since match_tick is rounded up. // If the same tick is returned scheduling will not work correctly. MBED_ASSERT(match_tick != queue->tick_last_read); ticker->interface->set_interrupt(match_tick); timestamp_t cur_tick = ticker->interface->read(); if (_ticker_match_interval_passed(queue->tick_last_read, cur_tick, match_tick)) { ticker->interface->fire_interrupt(); } } else { uint32_t match_tick = (queue->tick_last_read + queue->max_delta) & queue->bitmask; ticker->interface->set_interrupt(match_tick); } } void ticker_set_handler(const ticker_data_t *const ticker, ticker_event_handler handler) { initialize(ticker); core_util_critical_section_enter(); set_handler(ticker, handler); core_util_critical_section_exit(); } void ticker_irq_handler(const ticker_data_t *const ticker) { core_util_critical_section_enter(); ticker->interface->clear_interrupt(); if (ticker->queue->suspended) { core_util_critical_section_exit(); return; } /* Go through all the pending TimerEvents */ ticker->queue->dispatching = true; while (1) { if (ticker->queue->head == NULL) { break; } // update the current timestamp used by the queue update_present_time(ticker); if (ticker->queue->head->timestamp <= ticker->queue->present_time) { // This event was in the past: // point to the following one and execute its handler ticker_event_t *p = ticker->queue->head; ticker->queue->head = ticker->queue->head->next; if (ticker->queue->event_handler != NULL) { (*ticker->queue->event_handler)(p->id); // NOTE: the handler can set new events } /* Note: We continue back to examining the head because calling the * event handler may have altered the chain of pending events. */ } else { break; } } ticker->queue->dispatching = false; schedule_interrupt(ticker); core_util_critical_section_exit(); } void ticker_insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, timestamp_t timestamp, uint32_t id) { core_util_critical_section_enter(); // update the current timestamp update_present_time(ticker); us_timestamp_t absolute_timestamp = convert_timestamp( ticker->queue->present_time, timestamp ); // defer to ticker_insert_event_us ticker_insert_event_us( ticker, obj, absolute_timestamp, id ); core_util_critical_section_exit(); } void ticker_insert_event_us(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id) { core_util_critical_section_enter(); // update the current timestamp update_present_time(ticker); // initialise our data obj->timestamp = timestamp; obj->id = id; /* Go through the list until we either reach the end, or find an element this should come before (which is possibly the head). */ ticker_event_t *prev = NULL, *p = ticker->queue->head; while (p != NULL) { /* check if we come before p */ if (timestamp < p->timestamp) { break; } /* go to the next element */ prev = p; p = p->next; } /* if we're at the end p will be NULL, which is correct */ obj->next = p; /* if prev is NULL we're at the head */ if (prev == NULL) { ticker->queue->head = obj; schedule_interrupt(ticker); } else { prev->next = obj; } core_util_critical_section_exit(); } void ticker_remove_event(const ticker_data_t *const ticker, ticker_event_t *obj) { core_util_critical_section_enter(); // remove this object from the list if (ticker->queue->head == obj) { // first in the list, so just drop me ticker->queue->head = obj->next; schedule_interrupt(ticker); } else { // find the object before me, then drop me ticker_event_t *p = ticker->queue->head; while (p != NULL) { if (p->next == obj) { p->next = obj->next; break; } p = p->next; } } core_util_critical_section_exit(); } timestamp_t ticker_read(const ticker_data_t *const ticker) { return ticker_read_us(ticker); } us_timestamp_t ticker_read_us(const ticker_data_t *const ticker) { initialize(ticker); core_util_critical_section_enter(); update_present_time(ticker); core_util_critical_section_exit(); return ticker->queue->present_time; } int ticker_get_next_timestamp(const ticker_data_t *const data, timestamp_t *timestamp) { int ret = 0; /* if head is NULL, there are no pending events */ core_util_critical_section_enter(); if (data->queue->head != NULL) { *timestamp = data->queue->head->timestamp; ret = 1; } core_util_critical_section_exit(); return ret; } void ticker_suspend(const ticker_data_t *const ticker) { core_util_critical_section_enter(); ticker->queue->suspended = true; core_util_critical_section_exit(); } void ticker_resume(const ticker_data_t *const ticker) { core_util_critical_section_enter(); ticker->queue->suspended = false; if (ticker->queue->initialized) { ticker->queue->tick_last_read = ticker->interface->read(); update_present_time(ticker); schedule_interrupt(ticker); } else { initialize(ticker); } core_util_critical_section_exit(); }