SRecord

Reference Manual

Peter Miller
pmiller@opensource.grau

This document describes SRecord version 1.62
and was prepared 5 June 2013.

This document describing the SRecord program, and the SRecord program itself, are
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option)\alater version.

This program is distributed in the hope that it will be useful VAITHOUT ANY WARRANTY,
without even the implied warranty of MERCHAMNABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Table of Contents(SRecord)

srec_cat(1)
srec_cmp(1)
srec_aamples(1)
srec_info(1)
srec_input(1)
srec_license(1)
srecord_license(3)
srec_aomf(5)
srec_ascii_hg5)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)
srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)
srec_Airchild(5)
srec_astload(5)
srec_formatted_binary(5)
srec_forth(5)
srec_fpc(5)
srec_idt(5)
srec_intel16(5)
srec_intel(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)
srec_msbin(5)
srec_needham(5)
srec_0s65v(5)
srec_ppb(5)
srec_ppx(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_steie(5)
srec_tektronix(5)
srec_tektronix_xended(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_trs80(5)
srec_vmem(5)
srec_wilson(5)

Reference Manual

Table of Contents(SRecord)

The README fle
Release Notes .
How to build SRecord .
How to add a nev file format .
How to add a nev filter .
ManipulatePROM load ites
Compatevo EPROM load files for equallty
Examplesf how to use SRecord . .
Informatiombout EPROM loadlés
Inputile specifcations .
GNGeneral Public License .
GNUesser General Public License.
InteAbsolute Object Moduledrmat
Ascii-Hex file format
Atmé€leneric file format.
Binarfile format

Freescal6C68EZ328 Dragonball bootstrap record format .

XilimxCoeficient File Format
RCg&osmac Elf file format.
DEBinary (XXDP) file format.
Elektddonitor (EMONS52) file format
Fairchild Fairbug file format . .
LSLogic Fast Load file format
oFmatted Binary file format
FOMRH file format .
Bur Packed Code (FPC) flle format
IDT/sinbinary file format
InteHexadecimal 16-bit file format spermatlon
InteHexadecimal object file format specttion
Lattic®emory Initialization format .
Memorynitialization File (MIF) format .
MIPS-Fladite format.
MOEechnology file format.
Motorol&-Record hexadecimal file format
\dows CE Binary Image DataFmat .
Needh&P-series programmer ASCII file format
OS65Woader file format e
StaBrom Programmer binary format
StaBrom Programmer hexadecimal format .
Signetifi¢e format.
SBM file format .
Spectruite format
Stavie’s binary file format.
@ktronix hexadecimal file format. .o
€ktronix Extended hexadecimal file format .
eXas Instruments Tagged (SDS@20) file format .
ékas Instruments Tagged (SDSMAC) file format .
‘&xas Instruments ti-txt (MSP430) file format.
RadiShack TRS-80 object file format specition
VMEMile format . e
Wson file format .

SRecord

o

Coowwwdoadd oo oS WRD W

Table of Contents(SRecord)

srec_info(1)
srec_aomf(5)
srec_aomf(5)
srec_needham(5)

srec_ascii_hg5)
srec_ascii_hg5)
srec_atmel_generic(5)
srec_atmel_generic(5)
srec_binary(5)
srec_dec_binary(5)
srec_binary(5)
srec_formatted_binary(5)
srec_idt(5)

srec_stevie(5)
srec_ppb(5)
srec_formatted_binary(5)
srec_msbin(5)
srec_dec_binary(5)
srec_intel16(5)
srec_brecord(5)

srec_brecord(5)

srec_cat(1)
srec_msbin(5)
srec_cmp(1)

srec_fpc(5)
srec_coe(5)
srec_coe(5)
srec_cmp(1)
srec_cosmac(5)
srec_cosmac(5)
srec_msbin(5)
srec_dec_binary(5)

srec_dec_binary(5)
srec_brecord(5)
srec_emon52(5)
srec_cosmac(5)
srec_emon52(5)

srec_emon52(5)
srec_needham(5)
srec_cat(1)
srec_info(1)
srecord(3)
srec_cmp(1)
srec_cmp(1)

srec_aamples(1)
srec_aamples(1)

Reference Manual

50
79
79
122

81
81
82
82
83
88
83
93
98
130
124
93
120
88
99
85

85

26
120
34

95
86
86
34
87
87
120
88

88
85
89
87
89

89
122
26
50

34
34

37
37

Table of Contents(SRecord)

about EPROM load files
srec aomf - Intel Absolute Object Module Format
srec aomf - Intel Absolute Object Module Forme
srec needham - Needham EMP-serie&SCl| file format

srec info - information

programmer
srec ascii he- Ascii-Hex file format
srec ascii he- Ascii-Hex file format
srec atmel generic - Atmel Generic file format
srec atmel generic - Atmel Generic file format
srec binary - binary file format
srec dec binary - DEC Binary (XXDP) file format
srec binary - binary file format

srec formatted binary - Formatted
srec idt - IDT/sim
srec stewie - Stewie’s
srec ppb - Stag Prom Programmer
srec formatted
srec msbin - Windows CE

Binary file format
binary file format
binary file format
binary format
binary - Formatted Binary file format
Binary Image Data Format
srec dec binary - DEC Binary (XXDP) file format
srec intell6 - Intel Hexadecimal 16- bit file format specification
srec brecord - Freescale MC68EZ32&ootstrap record format

Dragonball
srec brecord - Freescale MC68EZ328 Dragonb
bootstrap record format
srec cat - manipulate EPROM load files
srec mshin - Windows CE Binary Image Data Format
srec cmp - compare wWEPROM load files for

equality
code file format
Codicient File Format
srec coe - Xilinx Codicient File Format
srec cmp - compare tWwEPROM load files for equality
srec cosmac - RCA Cosmac Elf file format

srec fpc - four packed
srec coe - Xilinx

srec cosmac - RCA Cosmac Elf file format
srec msbin - Windows CE Binary Image Data Format
srec dec binary - DEC Binary (XXDP) file

format
DEC Binary (XXDP) file format
Dragonball bootstrap record format
Elektor Monitor (EMONS2) file format
Elf file format
emon52 - Elektor Monitor (EMONS52) file
format
EMONS52) file format
EMP-series programmer ASCII file form
EPROM load files
EPROM load files

srec dec binary -
srec brecord - Freescale MC68EZ328
srec emon52 -
srec cosmac - RCA Cosmac
srec

srec emon52 - Elektor Monitor (
srec needham - Needham
srec cat - manipulate
srec info - information about
srecord - library to manipulate EPROM load files
srec cmp - compare two EPROM load files for equality
srec cmp - compare mEPROM load files equality
for
srec examples - examples of twao use SRecord
srec examples - examples of her to use SRecord

SRecord \'{

Table of Contents(SRecord) Table of Contents(SRecord)

srec_tektronix_xended(5) 134 srec tektronix extended - Tektronix Extended hexadecimal file format
srec_tektronix_xended(5) 134 srec tektronix extended - Tektronix Extended hexadecima
file format
srec_brecord(5) 85 srec brecord - Freescale MC68 EZ328 Dragonball bootstrap record forn
srec_Airchild(5) 91 srec fairchild - Fairchild Farbug file format
srec_Airchild(5) 91 srec fairchild - Farchild Fairbug file format
srec_Airchild(5) 91 srec fairchild - Fairchild Fairbug file format
srec_astload(5) 92 srec fastload - LS| Logic Fast Load file format
srec_astload(5) 92 srec fastload - LSI Logic Fast Load file format
srec_ascii_hg5) 81 srec ascii he- Ascii-Hex file format
srec_atmel_generic(5) 82 srec atmel generic - Atmel Genericfile format
srec_binary(5) 83 srec binary - binary file format
srec_coe(5) 86 srec coe - Xilinx Codifcient File Format
srec_cosmac(5) 87 srec cosmac - RCA Cosmac Elffile format
srec_dec_binary(5) 88 srec dec binary - DEC Binary (XXDP) file format
srec_emon52(5) 89 srec emon52 - Elektor Monitor (EMONS52) file format
srec_Airchild(5) 91 srec fairchild - Fairchild Fairbug file format
srec_astload(5) 92 srec fastload - LSl Logic Fast Load file format
srec_formatted_binary(5) 93 srec formatted binary - Formatted Binaryfile format
srec_forth(5) 94 srec forth - FORTH file format
srec_fpc(5) 95 srec fpc - four packed code file format
srec_idt(5) 98 srec idt - IDT/sim binary file format
srec_mips_flash(5) 114 srec mips flash - MIPS-Flash file format
srec_mos_tech(5) 116 srec mos tech - MOS Technologyfile format
srec_motorola(5) 118 srec motorola - Motorola S-Record file format
hexadecimal
srec_needham(5) 122 srec needham - Needham EMP-seriefile format
programmer ASCII
srec_0s65v(5) 123 srec 0s65v - OS65V Loader file format
srec_signetics(5) 126 srec signetics - Signetics file format
srec_spasm(5) 128 srec spasm - SPASM file format
srec_spectrum(5) 129 srec spectrum - Spectrum file format
srec_steie(5) 130 srec stewie - Stewighinary file format
srec_tektronix_ended(5) 134 srec tektronix extended - Tektronix file format
Extended hexadecimal
srec_tektronix(5) 132 srec tektronix - Tektronix hexadecimal file format
srec_ti_tagged_16(5) 135 srec ti tagged 16 -€kas Instruments Tagged file format
(SDSMAC 320)
srec_ti_tagged(5) 138 srec ti tagged -8xas Instruments Tagged file format
(SDSMAC)
srec_ti_txt(5) 141 srec ti txt - Bxas Instruments ti-txt file format
(MSP430)
srec_vmem(5) 144 srec vmem - vmem file format
srec_wilson(5) 146 srec wilson - wilson file format
srec_intel16(5) 99 srec intell6 - Intel Hexadecimal 16-bit file format specification
srec_intel(5) 103 srec intel - Intel Hexadecimal object file format specification
srec_trs80(5) 142 srec trs80 - Radio Shack TRS-80 objecfile format specification
srec_mif(5) 111 srec mif - Memory Initialization File (MIF) format
srec_cat(1) 26 srec cat - manipulate EPROM loadfiles
srec_info(1) 50 srec info - information about EPROM load files
srecord(3) srecord - library to manipulate EPROM loadiles
srec_cmp(1) 34 srec cmp - compare WEPROM load files for equality
srec_input(1) 52 SRecord - input file specifications

Reference Manual SRecord %

Table of Contents(SRecord)

srec_mips_flash(5)
srec_mips_flash(5)
srec_cmp(1)
srec_aomf(5)
srec_ascii_hg5)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)

srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)

srec_Airchild(5)
srec_astload(5)
srec_formatted_binary(5)

srec_forth(5)
srec_fpc(5)
srec_idt(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)

srec_msbin(5)
srec_needham(5)

srec_0s65v(5)
srec_ppb(5)
srec_ppx(5)

srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_steie(5)
srec_tektronix_xended(5)

srec_tektronix(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)
srec_vmem(5)
srec_wilson(5)
srec_intel16(5)

srec_intel(5)
srec_trs80(5)

Reference Manual

114
114
34
79

81
82
83
85

86
87
88
89

91
92
93

94
95
98
109
111
114
116
118

120

122

123
124
125

126
128
129
130
134

132
135

138

141

144
146

99
103
142

Table of Contents(SRecord)

srec mips flash - MIPS- Flash file format
srec mips
srec cmp - compare \WEPROM load files for equality

srec aomf - Intel Absolute Object Module Format

srec ascii hre- Ascii-Hex file format
srec atmel generic - Atmel Generic file format
srec binary - binary file format

srec brecord - Freescale MC68EZ328ormat
Dragonball bootstrap record
srec coe - Xilinx Codifcient File
srec cosmac - RCA Cosmac Elf file format
srec dec binary - DEC Binary (XXDP) file format
srec emon52 - Elektor Monitor (EMON52) format
file
srec fairchild - Fairchild Fairbug file format
srec fastload - LSl Logic Fast Load file format
srec formatted binary - Formatted Binaryformat
file

Format

srec forth - FORTH file format
srec fpc - four packed code file format
srec idt - IDT/sim binary file format
srec mem - Lattice Memory Initialization ~ format
srec mif - Memory Initialization File (MIF) format
srec mips flash - MIPS-Flash file format
srec mos tech - MOS Technology file format

srec motorola - Motorola S-Record format
hexadecimal file

srec msbin - Windows CE Binary Image Format
Data

srec needham - Needham EMP-serieformat
programmer ASCII file

srec 0s65v - OS65V Loader file format
srec ppb - Stag Prom Programmer binary format

srec ppx - Stag Prom Programmerformat

hexadecimal

srec signetics - Signetics file format

srec spasm - SPASM file format

srec spectrum - Spectrum file format
srec stewie - Stewighinary file format

srec tektronix extended - Tektronix format
Extended hexadecimal file
srec tektronix - Tektronix hexadecimal file format
srec ti tagged 16 -€kas Instruments Tagged format
(SDSMAC 320) file
srec ti tagged -8xas Instruments Tagged format
(SDSMAC) file
srec ti txt - Bxas Instruments ti-txt format
(MSP430) file
srec vmem - vmem file
srec wilson - wilson file
srec intel16 - Intel Hexadecimal 16-bit file
srec intel - Intel Hexadecimal object file
srec trs80 - Radio Shack TRS-80 obiject file

format
format
format specification
format specification
format specification

SRecord Vi

flash - MIPS-Flash file format

Table of Contents(SRecord)

srec_formatted_binary(5)
srec_formatted_binary(5)

srec_forth(5)
srec_forth(5)
srec_fpc(5)
srec_fpc(5)
srec_brecord(5)

srecord_license(3)
srec_atmel_generic(5)
srec_atmel_generic(5)
srecord_license(3)
srec_intel16(5)
srec_motorola(5)
srec_tektronix_xended(5)

srec_tektronix(5)
srec_ppx(5)
srec_intel(5)
srec_ascii_hg5)
srec_ascii_hg5)
srec_aamples(1)
srec_idt(5)
srec_idt(5)
srec_msbin(5)
srec_info(1)
srec_info(1)
srec_mif(5)
srec_mem(5)
srec_input(1)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)
srec_intel16(5)

srec_aomf(5)
srec_intel16(5)

srec_intel(5)
srec_intel(5)

srec_mem(5)
srecord_license(3)
srecord_license(3)

srecord(3)
srecord_license(3)
srec_0s65v(5)
srec_astload(5)
srec_cat(1)

Reference Manual

93
93

94
94
95
95
85

76
82
82
76
99
118
134

132
125
103
81
81
37
98
98
120
50
50
111
109
52
135

138
141
99

79
99

103

103

109
76
76

76
123
92
26

Table of Contents(SRecord)

srec formatted binary - Formatted Binary file format

srec formatted binary - Formatted Binary file

format
srec forth - FORTH file format
srec forth - FORTH file format
srec fpc - four packed code file format
srec fpc - four packed code file format
srec brecord - Freescale MC68EZ328 Dragonball

bootstrap record format

LGPG - GNU Lesser General Public License

srec atmel generic - Atmel Generic file format
srec atmel generic - Atmel Generic file format
LGPG - GNU Lesser General Public License

srec intell6 - Intel Hexadecimal 16-bit file format specificatio
srec motorola - Motorola S-Record hexadecimal file format
srec tektronix extended - Tektronix hexadecimal file format
Extended
srec tektronix - Tektronix
srec ppx - Stag Prom Programmer
srec intel - Intel

hexadecimal file format
hexadecimal format
Hexadecimal object file format specificatio
srec ascii he- Ascii-Hex file format
srec ascii hre- Ascii- Hex file format
srec examples - examples of vhto use SRecord
srec idt - IDT/sim binary file format
srec idt - IDT/sim binary file format
srec msbin - Windows CE Binary Image Data Format
srec info - information about EPROM load files
srecinfo - information about EPROM load files
srec mif - Memory Initialization File (MIF) format
srec mem - Lattice Memory Initialization format
SRecord - input file specifications
srec ti tagged 16 -€kas Instruments Tagged (SDSIA20) file
format
srec ti tagged -8xas Instruments Tagged (SDSMAC) file format
srec ti txt - Bxas Instruments ti-txt (MSP430) file format
srec intell6 - Intel Hexadecimal 16-bit file
format specification

srec aomf- Intel Absolute Object Module Format
srec intell6 - Intel Hexadecimal 16-bit file format
specification
srec intel - Intel Hexadecimal object file format
specification
srec intel - Intel Hexadecimal object file format
specification
srec mem - Lattice Memory Initialization format
LGPG - GNU Lesser General Public License
LGPG - GNU Lesser General Public
License
srecord - library to manipulate EPROM load files

LGPG - GNU Lesser General Public
srec 0s65v - OS65V

srec fastload - LSI Logic Fast

srec cat - manipulate EPROM

License
Loader file format
Load file format
load files

SRecord Vii

Table of Contents(SRecord)

srec_info(1)
srecord(3)
srec_cmp(1)
srec_astload(5)
srec_astload(5)
srec_cat(1)
srecord(3)
srec_brecord(5)

srec_mem(5)
srec_mif(5)
srec_mem(5)
srec_mif(5)
srec_mif(5)

srec_mips_flash(5)
srec_mips_flash(5)
srec_aomf(5)
srec_emon52(5)
srec_mos_tech(5)
srec_mos_tech(5)
srec_motorola(5)

srec_motorola(5)
srec_msbin(5)

srec_ti_txt(5)
srec_needham(5)

srec_needham(5)

srec_intel(5)
srec_trs80(5)
srec_aomf(5)
srec_0s65v(5)
srec_0s65v(5)
srec_fpc(5)
srec_ppb(5)
srec_ppx(5)

srec_needham(5)
srec_ppb(5)
srec_ppx(5)
srec_ppb(5)
srec_ppx(5)
srecord_license(3)
srec_trs80(5)

srec_cosmac(5)
srec_brecord(5)

srec_motorola(5)
srec_steie(5)

Reference Manual

50

34
92
92
26

85

109
111

109
111
111

114
114
79

89
116
116

118

118
120

141
122

122

103
142
79
123
123
95
124
125

122
124
125
124
125

76
142

87
85

118
130

Table of Contents(SRecord)

srec info - information about EPROM load files
srecord - library to manipulate EPROM load files
srec cmp - compare WwEPROM load files for equality
srec fastload - LSl Logic Fast Load file format
srec fastload - LSl Logic Fast Load file format
srec cat- manipulate EPROM load files
srecord - library to manipulate EPROM load files
srec brecord - Freescale = MCG68EZ328 Dragonball bootstrap recor
format
srec mem - Lattice Memory Initialization format
srec mif - Memory Initialization File (MIF) format
srec mem - Lattice Memory Initialization format
srec mif - Memory Initialization File (MIF) format
srec mif - Memory Initialization File (MIF)
format
srec mips flash - MIPS-Flash file format
srec mips flash - MIPS-Flash file format
srec aomf - Intel Absolute Object Module Format
srec emon52 - Elektor Monitor (EMON52) file format
srec mos tech - MOS Technology file format

srec mos tech - MOS Technology file format
srec motorola - Motorola S-Record hexadecima
file format

srec motorola - Motorola S-Record hexadecimal file formze
srec msbin - Windows CE Binary Image Data

Format
srec ti txt - Bxas Instruments ti-txt (MSP430) file format
srec needham - Needham EMP-series programmer ASCI
file format

srec needham - Needham EMP-series
programmer ASCII file format
srec intel - Intel Hexadecimal object file format specification
srec trs80 - Radio Shack TRS-80 object file format specification
srec aomf - Intel Absolute Object Module Format
srec 0s65v - OS65V Loader file format
srec 0s65v - OS65V Loader file format
srec fpc - four packed code file format
srec ppb - Stag Prom Programmer binary forme
srec ppx - Stag Prom Programmer hexadecima
format
srec needham - Needham EMP-series programmer ASCII file format
srec ppb - Stag Prom Programmer binary format
srec ppx - Stag Prom Programmer hexadecimal format
srec ppb - Stag Prom Programmer binary format
srec ppx - Stag Prom Programmer hexadecimal format
LGPG - GNU Lesser General Public License
srec trs80 - Radio Shack TRS-80 object file format
specification
srec cosmac - RCA Cosmac Elf file format
srec brecord - Freescale MC68EZ328ecord format
Dragonball bootstrap
srec motorola - Motorola S- Record hexadecimal file format
srec stewie - Stewie’ s hinary file format

SRecord viii

Table of Contents(SRecord)

srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_needham(5)
srec_trs80(5)

srec_signetics(5)
srec_signetics(5)
srec_idt(5)
srec_spasm(5)
srec_spasm(5)
srec_intel16(5)

srec_intel(5)
srec_trs80(5)
srec_input(1)
srec_spectrum(5)
srec_spectrum(5)

srec_aomf(5)

srec_ascii_hg5)
srec_atmel_generic(5)

srec_binary(5)
srec_brecord(5)

srec_cat(1)
srec_cmp(1)

srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)

srec_aamples(1)

srec_Airchild(5)
srec_astload(5)

srec_formatted_binary(5)
srec_forth(5)

srec_fpc(5)

srec_idt(5)

srec_info(1)

srec_intel16(5)

srec_intel(5)

Reference Manual

Table of Contents(SRecord)

135 srec ti tagged 16 -€kas Instruments Tagged SDSMAC 320) file format

138
122
142

126
126
98
128
128
99

103

142
52
129
129
79

81
82

83
85

26
34

86
87
88
89

37

91
92

93
94
95
98
50
99

103

(

srec ti tagged -&xas Instruments Tagged (
srec needham - Needham EMP-
srec trs80 - Radio

srec signetics -
srec
srec idt - IDT/
srec spasm -
srec

SDSMAC) file format
series programmer ASCII file format
Shack TRS-80 object file format
specification
Signetics file format
signetics - Signetics file format
sim binary file format
SPASM file format
spasm - SPASM file format

srec intel16 - Intel Hexadecimal 16-bit file specification

format

srec intel - Intel Hexadecimal object file specification

format

srec trs80 - Radio Shack TRS-80 object filespecification

format
SRecord - input file
srec spectrum -
srec

SRecord

specifications

Spectrum file format

spectrum - Spectrum file format
srec aomf - Intel Absolute Object Module
Format
srec ascii hve- Ascii-Hex file format
srec atmel generic - Atmel Generic file
format
srec binary - binary file format
srec brecord - Freescale MC68EZ328
Dragonball bootstrap record format
srec cat - manipulate EPROM load files
srec cmp - compare \WEPROM load files
for equality
srec coe - Xilinx Codifcient File Format
srec cosmac - RCA Cosmac Elf file format
srec dec binary - DEC Binary (XXDP) file
format
srec emon52 - Elektor Monitor (EMON52)
file format
srec examples - examples ofhto use
SRecord
srec fairchild - Fairchild Fairbug file format
srec fastload - LSl Logic Fast Load file
format
srec formatted binary - Formatted Binary
file format
srec forth - FORTH file format
srec fpc - four packed code file format
srec idt - IDT/sim binary file format
srec info - information about EPROM load
files
srec intel16 - Intel Hexadecimal 16-bit file
format specification
srec intel - Intel Hexadecimal object file
format specification

Table of Contents(SRecord) Table of Contents(SRecord)

srec_mem(5) 109 srec mem - Lattice Memory Initialization
format

srec_mif(5) 111 srec mif - Memory Initialization File (MIF)
format

srec_mips_flash(5) 114 srec mips flash - MIPS-Flash file format

srec_mos_tech(5) 116 srec mos tech - MOS Technology file forma

srec_motorola(5) 118 srec motorola - Motorola S-Record
hexadecimal file format

srec_msbin(5) 120 srec msbin - Windows CE Binary Image
Data Format

srec_needham(5) 122 srec needham - Needham EMP-series
programmer ASCII file format

srec_aamples(1) 37 srec examples - examples ofthto use SRecord

srec_motorola(5) 118 srec motorola - Motorola S-Record hexadecimal file format

srec_input(1) 52 SRecord - input file specifications

srecord(3) srecord - library to manipulate EPROM loac
files

srec_0s65v(5) 123 srec 0s65v - OS65V Loader file format

srec_ppb(5) 124 srec ppb - Stag Prom Programmer binary
format

srec_ppx(5) 125 srec ppx - Stag Prom Programmer
hexadecimal format

srec_signetics(5) 126 srec signetics - Signetics file format

srec_spasm(5) 128 srec spasm - SPASM file format

srec_spectrum(5) 129 srec spectrum - Spectrum file format

srec_steie(5) 130 srec stewie - Stewigtinary file format

srec_tektronix_xended(5) 134 srec tektronix extended - Tektronix
Extended hexadecimal file format

srec_tektronix(5) 132 srec tektronix - Tektronix hexadecimal file
format

srec_ti_tagged_16(5) 135 srec ti tagged 16 -€kas Instruments Tagged
(SDSMAC 320) file format

srec_ti_tagged(5) 138 srec ti tagged -8xas Instruments Tagged
(SDSMAC) file format

srec_ti_txt(5) 141 srec ti txt - Bxas Instruments ti-txt
(MSP430) file format

srec_trs80(5) 142 srec trs80 - Radio Shack TRS-80 object file
format specification

srec_vmem(5) 144 srec vmem - vmem file format

srec_wilson(5) 146 srec wilson - wilson file format

srec_ppb(5) 124 srec ppb - Stag Prom Programmer binary format

srec_ppx(5) 125 srec ppx - Stag Prom Programmer hexadecimal form

srec_stevie(5) 130 srec stewie - Stewiglinary file format

srec_steie(5) 130 srec stewie - Stewigtinary file format

srec_ti_tagged_16(5) 135 srecti tagged 16 -€kas Instruments Tagged
(SDSMAC 320) file format

srec_ti_tagged_16(5) 135 srec ti tagged 16 -€kas Instruments Tagged (SDSMA 320) file format

srec_ti_tagged(5) 138 srec ti tagged -8xas Instruments Tagged (SDSMAC) file format

srec_ti_tagged(5) 138 srecti tagged -8xas Instruments Tagged
(SDSMAC) file format

srec_mos_tech(5) 116 srec mos tech - MOS Technology file format

srec_mos_tech(5) 116 srec mos tech - MOS Technology file format

srec_tektronix_xended(5) 134 srec tektronix extended - Tektronix Extended hexadecimal file format

Reference Manual SRecord X

Table of Contents(SRecord) Table of Contents(SRecord)

srec_tektronix_xended(5) 134 srec tektronix extended - Tektronix Extended
hexadecimal file format

srec_tektronix(5) 132 srec tektronix - Tektronix hexadecimal file format

srec_tektronix(5) 132 srec tektronix - Tektronix hexadecimal file
format

srec_ti_tagged_16(5) 135 srec ti tagged 16 - Texas Instruments Tagged (SDSKa/820)
file format

srec_ti_tagged(5) 138 srec ti tagged - Texas Instruments Tagged (SDSMAC) file
format

srec_ti_txt(5) 141 srectitxt - Texas Instruments ti-txt (MSP430) file
format

srec_ti_tagged_16(5) 135 srec titagged 16 -€kas Instruments Tagged
(SDSMAC 320) file format

srec_ti_tagged(5) 138 srec titagged -&xas Instruments Tagged
(SDSMAC) file format

srec_ti_txt(5) 141 srec ti txt - Bxas Instruments ti-txt (MSP430) file format

srec_ti_txt(5) 141 srec i txt - Bxas Instruments ti-txt (MSP430)
file format

srec_trs80(5) 142 srec trs80 - Radio Shack TRS-80 obiject file format specification

srec_trs80(5) 142 srec trs80 - Radio Shack TRS-80 object file
format specification

srec_cmp(1) 34 srec cmp - compare twWEPROM load files for equality

srec_ti_txt(5) 141 srec ti txt - Bxas Instruments ti- txt (MSP430) file format

srec_ti_txt(5) 141 srecti txt- Bxas Instruments ti-txt (MSP430) file
format

srec_aamples(1) 37 srec examples - examples ofinto use SRecord

srec_0s65v(5) 123 srec 0s65v - OS65 V Loader file format

srec_vmem(5) 144 srec vmem - vmem file format

srec_vmem(5) 144 srec vmem - vmem file format

srec_0s65v(5) 123 srec 0s65 Vv - OS65V Loader file format

srec_wilson(5) 146 srec wilson - wilson file format

srec_wilson(5) 146 srec wilson - wilson file format

srec_msbin(5) 120 srec mshin - Windows CE Binary Image Data Format

srec_coe(5) 86 srec coe - Xilinx Coédfcient File Format

srec_dec_binary(5) 88 srec dec binary - DEC Binary (XXDP) file format

Reference Manual SRecord Xi

Read Me(SRecord) Read Me(SRecord)

NAME
SRecord — manipulate EPROM load files

DESCRIPTION
The SRecorgackage is a collection of powerful tools for manipulating EPROM load files.

| wrote SRecord because when | was looking for programs to manipulate EPROM load files, | could not
find very mag. The ones that | could find only did aMef the things | needed. SRecord is written in C++

and polymorphism is used to provide the file format flexibility and arbitrary filter chaining. Adding more

file formats and filters is relatly simple.

The File Formats
The SRecord package understands a number of file formats:

Ascii-Hex
The ascii-hg format is understood for both reading and writing. (Also known as the ascii-space-
hex format.)

ASM It is possible, for output onlyo produce a serices of DB statements containing the data. This can
be useful for embedding data into assembler programs. This format cannot be read.

Atmel Generic
This format is produced by the Atmel AVR assemblérs understood for both reading and
writing.

BASIC Itis possible, for output onlyo produce a serices ofAYA statements containing the data. This
can be useful for embedding data into BASIC programs. This format cannot be read.

Binary Binary files can both be read and written.

B-Record
Files in Freescale Dragonball bootstrap b-record format can be read and written.

C It is also possible to write a C array declaration which contains the data. This can be useful when
you want to embed download data into C programs. This format cannot be read.

COE The Xilinx Coefi cient File Format (.coe) is understood for output only.
Cosmac The RCA Cosmac Elf format is understood for both reading and writing.

DEC Binary
The DEC Binary (XXDP) format is understood for both reading and writing.

Elektor Monitor (EMON52)
The EMONS52 format is understood for both reading and writing.

Farchild Fairbug
The Fairchild Fairbug format is understood for both reading and writing.

Formatted Binary
The Formatted Binary format is understood for both reading and writing.

Four Packed Code (FPC)
The FPC format is understood for both reading and writing.

Hexdump
It is possible to get a simple hexdump as output.

IDT/sim The IDT/sim binary file format is understood for both reading and writing.

Intel The Intel hexadecimal format is understood for both reading and writing. (Also known as the
Intel MCS-86 Object format.)
Intel AOMF

The Intel Absolute Object Module Format (AOMF) is understood for both reading and writing.

Intel 16 The Intel hexadecimal 16 format is understood for both reading and writing. (Also known as the
INHX16 file format.)

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

LSI Logic Fast Load
The LSI Logic Fast Load format is understood for both reading and writing.

Memory Initialization Format
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for writing
only.

MIF The Memory Initialization File format by Altera is supported for both reading and writing.

MOS Technology
The MOS Technology hexadecimal format is understood for both reading and writing.

MIPS-Flash
The MIPS Flash file format is supported for both reading and writing.

Motorola S-Record
The Motorola hexadecimal S-Record format is understood for both reading and writing. (Also
known as the ExorcisgExormacs or Exormax format.)

MsBin The Windows CE Binary Image Data Format is supported both for reading and writing.

Needham
The Needham Electronics ASCII file format is understood for both reading and writing.

0S65V The Ohio Scientific hexadecimal format is understood for both reading and writing.

PPB The Stag Prom Programmer binary format is understood for both reading and writing.
PPX The Stag Prom Programmer hexadecimal format is understood for both reading and writing.
Signetics

The Signetics format is understood for both reading and writing.

SPASM The SPASM format is used by a variety of PIC programmers; it is understood for both reading
and writing.

Spectrum
The Spectrum format is understood for both reading and writing.

Tektronix (Extended)
The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both
understood for both reading and writing.

Texas Instruments Tagged
The Texas Instruments Tagged format is understood for both reading and writing (both 8 and 16
bit). Alsoknown as the Tl-tagged or TI-SDSNIAormat.

Texas Instruments ti-txt
The TI-TXT format is understood for reading and writing. This format is used with the bootstrap
loader of the &xas Instruments MSP430 family of processors.

TRS-80 The Radio Shack TRS-80 object file format is understood for reading and writing.
VHDL Itis possible to write VHDL ife. Thisis only supported for output.

Verilog VMEM
It is possible to write a Verilog VMEM file suitable for loading wiiteadmemh() . This
format is supported for reading and writing.

Wilson The Wilson format is understood for both reading and writing. This mystery format was added
for a mysterious type of EPROM writer.

The Tools
The primary tools of the package arec_catndsrec_cmp All of the tools understand all of the file
formats, and all of the filters.

srec_cat Thesrec_cafprogram may be used to catenate (join) EPROM load files, or portions of EPROM
load files, togetherBecause it understands all of the input and output formats, it can also be used

Reference Manual SRecord 2

Read Me(SRecord) Read Me(SRecord)

to corvert files from one format to another.

srec_cmp
Thesrec_cmpprogram may be use to compare EPROM load files, or portions of EPROM load
files, for equality.

srec_info
Thesrec_infoprogram may be used to print summary information about EPROM load files.

The Filters
The SRecorgackage is made more powerful by the concepimit filters Wherever an input file may be
specified, filters may also be applied to that injlat fThefollowing filters are aailable:

bit reverse
Thebit-reversefilter may be used toverse the order of bits in each data byte.

byte swap
Thebyte swagilter may be used to swap pairs of add aresh &ytes.

CRC The variousrc filters may be used to insert a CRC into the data.
checksum

The checksunfilters may be used to insert a checksum into the data. y@pségdive
and bit-not checksums areadable, as well as big-endian and little-endian byte orders.

crop Thecropfilter may be used to isolate an input address range, or ranges, and discard the
rest.

exclude Theexcludefilter may be used to exclude an input address range, or ranges, and keep the
rest.

fill Thefill filter may be used to fill 3nholes in the data with a nominated value.
length Theengthfilter may be used to insert the data length into the data.

maximum
Themaximunfilter may be used to insert the maximum data address into the data.

minimum
Theminimumfilter may be used to insert the minimum data address into the data.

offset Theoffsetfilter may be used to offset the address of data records, both forwards and
backwards.

random fill
Therandom fillfilter may be used to fill holes in the data with random byte values.

split Thesplit filter may be used to split EPROM images for wide data buses or other
memory striping schemes.

unfill The unfill filter may be used to makwvles in the data at bytes with a nominated value.
unsplit Theunsplitfilter may be reerse the effects of the split filter.

More than one filter may be applied to each inpat Different filters may be applied to each
input file. All filters may be applied to all file formats.

ARCHIVE SITE
The latest version ddRecords available on the Web from:

URL: http://srecord.sourcefge.net/

File: index.html #the SRecord page

File: srecord-1.62.README # Description, from the tar file
File: srecord—1.62.Ism # Description, LSM format

File: srecord—-1.62.spec # RedHat package specification
File: srecord-1.62.tagz #the complete source

Reference Manual SRecord 3

Read Me(SRecord) Read Me(SRecord)

File: srecord—1.62.pdf # Reference Manual

BUILDING SRECORD
Full instructions for buildingsRecordmay be found in thBUILDING file included in this
distribution.

It is also possible to buil8Recordn Windows using the Cygwin (www.cygwin.com) or DJIGPP
(www.delorie.com/djgpp) edironments. Instructionare in theBUILDING file, including hav to
get natve Windows binaries.

COPYRIGHT
srecordversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the
License, or (at your option) whater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae recevved a mpy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

It should be in th&eICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
M* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES
This section details the various features and bug fixes of the various releasesruciating and
complete detail, and also credits for those of you wive lganerously sent me suggestions and
bug reports, see thetc/ CHANGES .files.

Version 1.62 (2013-Jun-05)

* Luc Steynen <LucSteynen@edna.be> disoed that the —hecksum-big-endian opion was a
counter-intuitve dias for the the —checksum-bitnot-big-endian option. The —checksum-big-
endian option is n@ deprecated, indva of the —checksum-bitnot-big-endian option; the code
will warn uers of the old option tgewill need to change. Ditto little-endian variants

« Alin Pilkington <apilkington@moog.com> found that the Tektronics Extended format was
calculating the record length incorrectoffhanks you for the bug report. This has been fixed
for both reading and writing.

» Dr. Benedikt Schmitt <Benedikt.Schmitt@safeintrain.de> suggested being able to inject
arbitrary data into the file header (such as NUL termination characters). This change set adds
URL-style escapes (e.g. %25) to the string on he command line. For example: —header or
—generate —string

Version 1.61 (2013-Jan-04)
* lzzet Ozcelik <izzetozcelik@cscope.co.uk> disged a bug in the Tektronix-Extenden format
line checksum calculations. The comparison shouké heen in 8 bits, not int.

» Daniel Anselmi <danselmi@gmx.ch> contributed a Memory Initialization Format by Lattice
Semiconductqifor output only.

» Daniel Anselmi <danselmi@gmx.ch> contributed a Xilinx Gi@é&nt File Format (.coe) output
class.

Version 1.60 (2012-May-19)
» There are no sevaal additional CRC-16 polynomials, plus the ability to select a polynomial by
name, rather than by value. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table
of names and values.

Version 1.59 (2012-Feb-10)
* A number of additional CRC-16 polynomialsveaeen added, as well as the ability to select a
polynomial by name, rather than bglwe. Seerec_inpugl) for more information.

Version 1.58 (2011-Dec-18)
» The-guesscommand line option, for guessing the file formatyratso tells you the command
line option you could heae wsed instead ofguesdor the exact format.

» The Integaed Device Technology (IDT) system integration manager (IDT/sim) binary format
is nov understood for both reading and writing.

» The Stag Prom Programmer binary format i& sopported for both reading and writing.
» The Stag Prom Programer hexadecimal formatvs uralerstood for both reading and writing.
» The MIPS-Flash fiel format is mosupported for both reading and writing.

» Bernhard WeirickkBernhard.Weirich@riedel.net> discorvered that a backward
compatible option had been omitted when-thétel 16 option was renamedINtel _HeX_ 16
to more closely match the usual abbreviation (INHX16) for this format. The backwards
compatible option name has been reintroduced.

» The windows build instructions ta been greatly impteed, based on the experiences of Jens
Heilig <jens@familie-heilig.net> which he has generously shared.

» The documentation in the manual about sequence warnings has beareimgioe-disable-
sequence-warning®ption must come before the input file on the command line. My thanks to
Emil Gracic<emil_kruki@yahoo.com> for reporting this problem.

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

Version 1.57 (2011-Jun-09)

The byte order of the fletcherl6 output has beeersed.

The meaning of theaddress-lengthoption has been change for the Intel output format.
Previously 2 meant using i16he20-bit segmented addressing, and >2 meant using i32hex
extended addressing. This has been changed: a value of 2 requesi&iBiteaddressing, a
value of 3 requests i16R0-bit segment addressing, and a value >=4 requestsxi32Hgit
addressing. Myhanks to Stephen R. Phillipsrp@CSECorporation.com> for reporting
the absence of i8Resupport.

The—generate —repeat-stringoption is nav able to tale a sring that looks lile a umber as the
text to be repeated. My thanks to Stephen R. Philgpp@CSECorporation.com> for
reporting this problem.

Luca Giancristofar&luca.giancristofaro@prosa.com> discorered a WIinAVR linker
that is a sandwich short of a picnic: it generated non-conforming In¢ehkleof-file records.
This is no longer an errdout only a warning.

There were some problems with the RPM spec file, theseliegn impreed. My thanks to
Galen Seitxgalens@seitzassoc.com> for reporting this problem.

Version 1.56 (2010-Sep-15)

A bug has been fixed in the MsBin output, itlnconcatenates records correctyd calaulate
checksums appropriately.

It is now possible to ask the Fletcher 16 filter tegiyou a specific answeand adjusting the
checksum to achie that result. It is also possible to specify different seed values for the sums.

There is a n@ srec_cat-enable=optional-addresoption to cause output formats capable of
omitting addresses, to omit a leading zero address, as those formats usually default the address
to zero, if no address information is seen before the first data record. Defaults to false
(disabled).

There is a newrec_cafl) —output-block-packing option, that may be used to pack output
records een when thg cross internal SRecord boundaries.

There is a newrec_cafl) —output-block-sizeso that you can specify the block size exactly,
rather than implying it with the line length option.

Version 1.55 (2010-Feb-10)

The Makefile.in has been impred, it nov copes with non-standaret-prefix ~ options.

The rpm.spec file has been imped, it nov separates the commands, shared libraries and
development files.

Version 1.54 (2010-Jan-29)

There is nw a shared library installed, including the necessary header files so that you can use
all of the file formats and filters in your own projects.

The license on the shared library code is GNU Lesser General Public License, version 3.0 or
later.

The code can cope with older versions of GNU Libgcrypt. In the case of very old versions, by
ignoring it.

A number of build problems ka keen fixed.

Version 1.53 (2009-Nov-10)

There is a n@ MsBin (Windows CE Binary Image Data) file format, supported for both reading
and writing.

The lintian(1) warning about hyphen in the manual pages has been silenced, by careful use of —,
- and — as appropriate. Sure makes some of the sourcegtuglyThelintian(1) warning about
the undefined .XX macro has been silenced, by making it conditional.

Reference Manual SRecord 6

Read Me(SRecord) Read Me(SRecord)

» The code will build without libgcrypt.

Version 1.52 (2009-Sep-17)
» There is a newsrec_cat —generator —I-e-constadata generator (and alsb-e-cons} that may
be used to insert multi-byte constants into your data.s@ee inpufl) for more information.

Version 1.51 (2009-Sep-13)
* A number of gcc 4.4 build problemsvgabeen fixed.

» Abugs has been fixed in the Intel output format. When using the segemented format (address-
length=2) records that span the end of segment boundary aye Thiekcode nev carefully
splits such output records, to ensure the parts are explicitly placed into separate segments.

Version 1.50 (2009-Jul-09)
» The CRC16 code has been enhanced to provide low-to-high bit iordedition to the previous
high-to-low bit order It is dso possible to specify the polynomial, with the default the CCITT
standard polynomial, as was in the previous code.sf&eeinpufl) for more information.

» The MD5, RipeMD-160, SHA1, SHA224, SHA256, SHA384, SHA 512 and Whirlpool
message digests aremsupported. Sesrec_inpufl) for more information.

» There is a newgrec_cat —bit-ewersefilter, that may be used towerse the bits in each data byte.
Seesrec_inpufl) for more information.

Version 1.49 (2009-May-17)
» Atypo in the srec_input(1) man page has been fixed.

Version 1.48 (2009-Apr-19)
» There are ng Fletcher Checksum filters, both 32-bits and 16-bits, both little-endian and big-
endian.

» There are ng Adler Checksum filters, both 32-bits and 16-bits, both little-endian and big-
endian.

Version 1.47 (2009-Feb-19)
* Memory Initialzation File (MIF) format by Altera is mosupported for reading and writing.

Version 1.46 (2009-Jan-13)
» There is a n# option for the —x-e-length filters, thg can nav accept a width, and this is
divided into the byte lenght, so that you can insert the length in units of words (2) or longs (4).

* Some small corrections & leen made to the documentation.

* The —minimum and —-maximum optionsveabeen renamed —minimum-address and
—-maximum-address, tovaid a command line grammar syntax problem.

Version 1.45 (2008-Sep-30)
» Abug has been fixed in therec_cafl) command.You ae nawv able to specify seeral inputs
within parentheses, instead of just one. This allows filters to be applied to the concatenation of
several inputs.

» Thesrec_cafl) command is n@ able to write FORTH output.

Version 1.44 (2008-Aug-29)
* Some compilers issue a warning when const appears bgfera.e"warning: storage class is
not first". TheC output has been updated to conform to this expectation.

» The manual page farec_cafl) has been enhanced to describe the in-memory data model, and
the resulting output data order.

» The-motorola optional width argument moproduces a better error message when it is out of
range.

» The-fill filter now checks the size, and fails for absurdly large fills, wittb@ override if they
really want >1GB fills.

Reference Manual SRecord 7

Read Me(SRecord) Read Me(SRecord)

* Abug in the .spec file for rpmbuild has been fixed, ivriakes notice of
$RPM_BUILD_ROOT

» There is a newline-termination option, which may be used to select the desired line
termination of output text files.

Version 1.43 (2008-Jul-06)
» Thesrec-cat —data-onlyption has been broken down into four separate controls. It is now
possible to-enableand—disableindividual features, such as “header”, “data-count”,
“execution-start-address” and “footer”. Seec_cafl) for more information.

* Thesrec_cat —start-addressption has been renamedxecution-start-addresgo remwe ay
confusion with the-offsetfilter. The documentation moexplicitly explains the difference
between the two.

» Examples of coverting to and from binary files lva been added to therec_exampl€4) man
page.

* A bug has been fixed in the MOS Tech format, iwremnits an end recordsen when there is no
execution start address passed in.

Version 1.42 (2008-Jun-01)
* The MOS Technology format was not reading and writing end records cartlistlyas been
fixed. Thename of the compgrhas been corrected.

* Some examples of loto insert constant or scripted data into your EPROM load files been
added to therec_exampl€3) man page.

Version 1.41 (2008-May-12)
» Fdse ngadive teing reported by tests on Cygwinvieaeen fixed.

» There are six nefilters (—be-exclusie-length, —le-exclusie-length, —be-excluge-maximum,
—le-exclusve-maximum, —be-excluge-minimum and —le-excluge-minimum) which are very
similar to their non-excluge equivalents, except that tigedo mot include the adress range
covered by their output in their output.

» Abug has been fixed in the C word-array output. It was getting offsets and lengths wrong in
some cases.

» Abug has been fixed in the generated C array header file, it no longer omits the section
descriptor arrays.

* A problem with building RPM packages with the names of #eewgables in the .spec file has
been fixed, and the BuildRequires has been updated.

Version 1.40 (2008-Mar-13)
* An RPM build problem has been fixed.

» The dependenycon the Boost library is n@ documented in the BUILDING file.
* Some build problems with g++ 4.3\®abeen fixed

» Abug has been fixed in the calculation of ranges on the command line, it no longer goes into an
infinite loop for "—fill OXFF —aover { f 00.hex —exclude —within foo.hg }" c onstruct, which
should hae keen calculating an empty fill set, but was instead calculating a 4GB fill set.

» The CRC32 filters nw take an xmodem option, to use an xmodemelif@ll bit zero) initial
state, rather than the default CCITT (all bits on) initial state.

Version 1.39 (2008-Feb-04)
* Abug has been fixed in the use of parentheses to group filtervemid® the default
precedences.

Version 1.38 (2008-Jan-14)
» The CRC16 filters nw support a —Broken option, to perform a common-but-broken CRC16
calculation, in addition to the CCITT and XMODEM calculations.

Reference Manual SRecord 8

Read Me(SRecord) Read Me(SRecord)

» Alink has been added to the CRC16 man page section to the
www.joegeluso.com/software/articles/ccitt.htm web page, to explain fiheutties in seeding
CRC16 calculations.

» Abuglet has been fixed in tlsgec_motorol&) man page, it @ includesSé in the list of
things that can appear in the type field.

» The ability to ngae expressions is momentioned in thesrec_examplg¢s) man page.

Version 1.37 (2007-Oct-29)
* Itis now possible to hee regdive expressions on the command line, to facilitate “——offset —
—minimum foo” usages.

» Thesrec_cafl) command nw has a simple hexadecimal dump output format.

» The use ofiudecod§fl) in the tests has been rerad, sosharutilsis no longer a build
dependeng

Version 1.36 (2007-Aug-07)
» Abug has been fixed in the CRC-16 CCITT calculation; the algorithm was correct but the start
value was incorrect, leading to incorrect results.

» The CRC16 filters hae a rw —no-augment option, to omit the 16 zero bits augmenting the
message. This not CCITT standard conforming, but some implementations do this.

» A problem has been fixed in the generated Makefile.in file found in the tarball.
» The license has been changed to GNU GPL version 3.

Version 1.35 (2007-Jun-23)
» A major build problem with the generated makefile has been fixed.

Version 1.34 (2007-Jun-22)
» The C and ASM output formatsvebeen impreed in the word mode.

» Several build problems hze been fixed.

Version 1.33 (2007-May-18)
* More examples he been added to the documentation.

« Itis now possible to perform set intersection and set difference on address ranges on the
command line.

» There is a n# category of data source: generatoyeu can generate constant data, random
data and repeating data.

» The assembler and C-Array outputswsupport additional options to facilitate MSP430
systems. Thecan also optionally write shorts rather than bytes.

* You can nav round address ranges on the command line to be whole multiples of a number of
bytes.

Version 1.32 (2007-Apr-24)
» The TI-TXT format output has been impeal; it is less spec conforming but more reality
conforming. Itnow alows odd alignment without padding. It also ends withiastead of &

» The warning for odd input addresses has been dropped. The spetikidthem, but the
MSP430 handles them without a hiccup.

Version 1.31 (2007-Apr-03)
» The Verilog format nev suppresses comments when you specify the ——data-only option.

* The Texas Instruments ti-txt (MSP430) format ismanderstood for reading and writing.

Version 1.30 (2007-Mar-21)
» The ascii-hg output format has been impwed.

Reference Manual SRecord 9

Read Me(SRecord) Read Me(SRecord)

» The ti-tagged 16-bit format is mounderstood for reading and writing.
» The Intel format no longer warns about missing optional records.
* Abug in the ti-tagged format has been fixed, ivnmderstands the '0’ tag.

Version 1.29 (2007-Mar-13)
» A serious bug has been fixed in the generated Makefile.

Version 1.28 (2007-Mar-08)
* Itis now possible to read and write files in the Freescale MC68EZ328 Dragonball bootstrap b-
record format

Version 1.27 (2006-Dec-21)

» [SourceForge Feature Request 1597637] There iwavaening issued when input data records
are not in strictly ascending address ordérere is a n@ command line option to silence the
warning.

* [SourceFoge Featur&kequest 1592348] The command line processing of all srecord
commands n@ understandgdile command line options, filled with additional space separated
strings witch will be treated as of thevere command line options. This gets around absurdly
short command line length limits in some operating systems.

Version 1.26 (2006-May-26)
« Itis now possible to place parentheses on the command line in more places to clarify your
intent.

» This change prepares SRecord for the next public release.

Version 1.25 (2006-May-18)
» The assembler output has been enhanced to produce ORGreitéttiecessaryo change the
data address.

» Thesrec_cafl) command nw only writes an gecution start address into the output if there
was an gecution start address present in the input.

Version 1.24 (2006-Mar-08)
» Additional information has been added to the Iseek error whgrrthto seek to addresses >=
2**31

» The CRC 16 filters hae been enhanced to accept an argument to specify whether CCITT or
XMODEM calculations are to be performed.

Version 1.23 (2005-Sep-23)
» A sedfault has been fixed on x86_64 when running the regression test suite.

» A compile problem with the lib/srec/output/file/c.cc file has been fixed.

Version 1.22 (2005-Aug-12)
» The-byte-swapfilter nonv has an optionalidth argument, to specify the address width to
swap. Thedefault is tvo bytes.

» The motorola file format n@ accepts an additional 'width’ command line argument, so you can
have 16-bit and 32-bit address multiples.

» Abug has been fixed in the VMEM output format. It was failing to correctly set the next
address in some cases. This fixes SourceForge bug 1119786.

» The —C-Array output format mouses theconst keyword by default, you can turn itfokith
the —no-const option. The —C-Array output format caw generate an additional include file
if you use the —INClude option. This answers SourceForge feature request 942132.

» Afix for the "undefined symbols" problem when using g++ 3.x on Cygwin and MacOsX has
been added to the ./configure script.

Reference Manual SRecord 10

Read Me(SRecord) Read Me(SRecord)

» There is a ng —ignore-checksum command line option. The —ignore-checksums option may
be used to disable checksum validation of input files, for those formats whielheeksums
at all. Note that the checksum values are still read in and parsed (so it is still an eryoari the
missing) but their values are not checked.

Version 1.21 (2005-Feb-07)
* More Doxygen comments @ teen added to the class header files.

» There is a newrec_cat ——crlfoption, which may be used for force CRLF output on operating
systems which dohuse that style of line termination.

* A number of problems with GCC, particularly with the earlys®ries.

» There is a ng "Stewie" format, an undocumented format loosely based on the Motorola S-
Record format, apparently used in mobile phones. More information would be most welcome.

* A number of build problems ke teen fixed.

Version 1.20 (2004-Feb-08)
» The AOMF format nw accepts (and ignores) more record types.

Version 1.19 (2004-Jan-03)
* It is now possible to set thexecution start address in the output usingdiee_cat
—Execution_Start_Addregsommand line option.

* The Intel Absolute Object Module Format (AOMF) isansupported for reading and writing.

» There is a newrec_cat —Random_Fifilter, like thesrec_cat —Fillfilter except that it uses
random values.

Version 1.18 (2004-Jan-01)
» The VMEM format is na able to output data for 64 and 128 bits wide memories.

» Abug in the SRecord reference manuals has been fixed; the CRCxx had a copy-and-paste glitch
and alvays said big-endian where little endian was intended half the time.

Version 1.17 (2003-Oct-12)
» There is nw support for Intel Extended Segment addressing output, via the ——address-length=2
option.
» There is nw support for output of Verilog VMEM format. Sesec_vmeitb) for more
information.

» There is nw support for reading and writing the INHX16 format, used in various PIC
programmers. llooks just lile the Intel He format, except that the bytes counts and the
addresses refer to words (hi,lo) rather than bytes.sfeeeintel165) for more information.

Version 1.16 (2003-Jul-28)
* Some updates kia been made to cope with GCC 3.2

Version 1.15 (2003-Jun-16)
» The ASCII-Hex implementation is n@ dightly more completel still haven’t found a definitre
description.

» The Fairchild Fairbug format has been added for reading and writingsr&edaichild (5) for
more information.

» The Spectrum format has been added for reading and writingsr&eepectruii®d) for more
information.

» The Formatted Binary format has been added for reading and writing. See
srec_formatted_bina($) for more information.

» The RCA Cosmac Elf format has been added for reading and writingsr&@ee&osma®) for
more information.

Reference Manual SRecord 11

Read Me(SRecord) Read Me(SRecord)

» The Needham EMP programmer format has been added for reading and writing. See
srec_needha(b) for more information.

Version 1.14 (2003-Mar-11)
* Numerous fixes hae been made to header handling. It iswymssible to specify an empty
header with the-header command line option.

* Some more GCC 3.2 build problems/édeen fixed.

Version 1.13 (2003-Feb-05)
» Bugs hae keen fixed in the @xas Instruments Tagged and VHDL formats, which produced
inconsistent output.

» A couple of build problems lva keen fixed.
» There are tw new autput formats for ASM and BASIC.

Version 1.12 (2002-Dec-06)

* Itis now possible to put-minimum input.speqalso—maximum and-length) aimost
anywhere on the command line that you can put a nunibalows, for example, the —offset
value to be calculated from the maximum of the previdas Thevalues calculated by
—Minimum , -Maximum and-Length may also be rounded to arbitrary boundaries, using
—Round_Down —Round_Nearestand—Round_Up.

» The malformed Motorola S5 records output by the Green Hills tool chainarenuerstood.

Version 1.11 (2002-Oct-21)
» The Ohio Scientific OS65V audio tape format has been added for reading and writing. See
srec_o0s65¢b) for more information.

» Some build problems kia been fixed.

Version 1.10 (2002-Jun-14)
* The Intel format n& emits the redundant extended linear address record at the start of the file;
some loaders couldntope without it.

» The Binary format n@ copes with writing to pipes.

» The Motorola format ne understands the S6 (24-bit data record count) records for reading and
writing.
» The DEC Binary format n@ works correctly on Windows machines.

» The LSI Logic Fast Load format is wainderstood for both reading and writing. See
srec_fastloa¢b) for more information.

Version 1.9 (2001-Nov-27)
» The DEC Binary (XXDP) format is mounderstood for both reading and writing. See
srec_dec_binarfp) for more information.

» The Elektor Monitor (EMON52) format is mounderstood for both reading and writing. See
srec_emon53) for more information.

» The Signetics format is mounderstood for both reading and writing. Seec_signetid®) for
more information.

» The Four Packed Code (FPC) format issnmderstood for both reading and writing. See
srec_fp¢b) for more information.

» Wherever possible, header data ismpassed through bgrec_cafl). Theres also a new
srec_cat —headeoption, so that you can set the header comment from the command line.

» The Atmel Generic format for Atmel AVR programmers issnsmderstood for both reading and
writing. Seesrec_atmel_gener{b) for more information.

» The handling of termination records has been iwvgato It caused problems for a number of
filters, including the —fill filter.

Reference Manual SRecord 12

Read Me(SRecord) Read Me(SRecord)

* Abug has been fixed in the checksum calculations for the Tektronix format.
* There is a n@ SPASM format for PIC programmers. Seeec_spasid) for more information.

Version 1.8 (2001-Apr-20)
» There is a ng “unfill” filter , which may be used to perform theeese effect of the “fill” filter.

» There is a n# bit-wise NOT filter, which may be used tovert the data.
» A couple of bugs ha keen fixed in the CRC filters.

Version 1.7 (2001-Mar-19)
* The documentation is moin PDF format. This was in order to ma&kt more accessible to a
wider range of people.

» There is a newrec_cat ——address-lengtbption, so that you can set the length of the address
fields in the outpuile. For example, if you atays want S3 data records in a Motorola Fike,
use the-—address-length=4 option. Thishelps when talking to brain-dead EPROM
programmers which do not fully implement the format specification.

» There is a new—multiple option to the commands, which permits an input file to contain
multiple (contradictory) values for some memory locations. The last value in the file will be
used.

» A problem has been fixed which stopped SRecord from building under Cygwin.

» Abug has been fixed in the C array output. It used to genexatiinutput when the input
had holes in the data.

Version 1.6 (2000-Dec-03)
» Abug has been fixed in the C array output. (Holes in the input causedaa @ file to be
produced.)

» There is are e CRC input filters, both 16-bit and 32-bit, both big and little endian. See
srec_catl) for more information.

» There is a n& VHDL output format.

» There are ng checksum filters: in addition to the existing anedmplement (bit not) checksum
filter, there are no negdive and positve checksumifters. Seesrec_cafl) for more
information.

* The checksum filters are waable to sum wer 16-bit and 32-bit values, in addition to the
existing byte sums.

» Thesrec_cmpprogram nav has a——verboseoption, which g¥es more information about how
the two inputs differ Seesrec_cmgl) for more information.

Version 1.5 (2000-Mar-06)
» There is nw a ommand line option to guess the input file format; all of the tools understand
this option.

» The “MOS Technologies” file format is mounderstood for reading and writing. See
srec_mos_teb) for more information.

» The “Tektronix Extended” file format is mounderstood for reading and writing. See
srec_tektronix_extendé&s) for more information.

» The “Texas Instruments Tagged” file format ismanderstood for reading and writing. (Also
known as the TI-Tagged or SDSNMAormat.) Seerec_ti_tayged(5) for more information.

» The “ascii-hex” file format is n@ understood for reading and writing. (Also known as the
ascii-space-heformat.) Seerec_ascii_hef) for more information.

» There is a neayte swapnput filter, dlowing pairs of odd andven input bytes to be swapped.
Seesrec_cafl) for more information.

Reference Manual SRecord 13

Read Me(SRecord) Read Me(SRecord)

» The “wilson” file format is nav understood for reading and writing. This mystery format was
added for a mysterious type of EPROM wirit€eesrec_wilsoifs) for more information.

» Thesrec_catprogram nw/ has a-data-only option, which suppresses all output except for the
data records. This helps when talking to brain-dead EPROM programmers which barf at
anything but data. Sesrec_cafl) for more information.

» There is a newLine-Lengthoption for thesrec_catprogram, allowing you to specify the
maximum width of output lines. Seeec_cafl) for more information.

Version 1.4 (2000-Jan-13)
» SRecord can o cope with CRLF sequences in Uniles. Thiswas unfortunately common
where the file was generated on a PC, but SRecord was being used on Unix.

Version 1.3 (1999-May-12)
» A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

» A bug has been fixed where binary files were handled incorrectly on Windows NT (gcwgally
system in which text files ardrthe same as binary files).

» There are three medata flters. The——OR filter, which may be used to bit-wise OR a value to
each data byte; the ——AND filtawhich may be used to bit-wise AND a value to each data
byte; and the ——eXclugg-OR filter, which may be used to bit-wise XOR a value to each data
byte. Seesrec_cafl) for more information.

Version 1.2 (1998-Nov-04)
» This release includes file format man pages. The web page also includes a PostScript reference
manual, containing all of the man pages.

» The Intel h& format nev has full 32-bit support. Sesec_inte{5) for more information.

» The Tektronix he format is nav supported (only the 16-bit version, Extended Tektronixilse
not yet supported). Sesec_tektronits) for more information.

» There is a newplit filter, useful for wide data buses and memory striping, and a complementary
unsplitfilter to reverse it. Seesrec_cafl) for more information.

Version 1.1 (1998-Mar-22)
First public release.

Reference Manual SRecord 14

Build(SRecord) Build(SRecord)

NAME
How to build SRecord

SPACE REQUIREMENTS
You will need about 3MB to unpack and build tBRecorcbackage. ®Wur milage may vary.

BEFORE YOU START
There are a fg pieces of software you may want to fetch and install before you proceed with your
installation of SRecord.

Boost Library
You will need the C++ Boost Libranf you are using a package based system, you will need the
libboost-deel package, or one named something very similar.
http://boost.org/

Libgcrypt Library
You will need the GNU Crypt libratylf you are using a package based system, you will need the
libgcrypt-devel package, or one named something very similar.
http://directory.fsf.org/project/libgcrypt/

GNU Libtool
You will need the GNU Libtool software, used to build shared libraries on a variety of systems.
http://www.gnu.org/software/libtool/

GNU Groff
The documentation for théRecordpackage was prepared using the GNU Gratkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if yeeioh done
so already This is not essential. SRecord wasdeped using the GNU C++ compilend the
GNU C++ libraries.

The GNU FTP arclies may be found aftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
The SRecordpackage is configured using tbhenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thtakefileandlib/config.hfiles. Italso creates a shell script
config.statughat you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containin§Recorés source code and then type
% ./configure
...lots of output...
%
If you're usingcshon an old version of System ¥bu might need to type
% sh configure
...lots of output...
%
instead to preent cshfrom trying to executeconfigureitself.

Runningconfiguretakes a minute or tw Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,

% ./configure ——quiet

%

To compile theSRecordpackage in a different directory from the one containing the source code, you must
use a version ahakethat supports th#PATH variable, such assNU make cd to the directory where you

want the object files andxecutables to go and run tleenfigurescript. configureautomatically checks for

the source code in the directory tiahfigureis in and in.. (the parent directory). If for some reason
configureis not in the source code directory that you are configuring, then it will report thattifindrthe

Reference Manual SRecord 15

Build(SRecord) Build(SRecord)

source code. In that case, rwnfigurewith the option--srcdir= DIR, whereDIR is the directory that
contains the source code.

By default,configurewill arrange for themale install command to install thERecordpackages files in
/usr/local/bin and/usr/local/man There are options which alloyou to control the placement of these

files.

——prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisritocalunless otherwise
specified.

——exec—prefix= PATH
You can specify separate installation prefixes for architecture-specificifdes Defults to
${prefix} unless otherwise specified.

——bindir=" PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/birunless otherwise specified.

——mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-dbifaults to${prefix}/manunless otherwise
specified.

configureignores most other arguments that yoregt; use the-—help option for a complete list.

On systems that require unusual options for compilation or linking th&Rkeordoackage'sonfigure
script does not ki about, you can gie configureinitial values for variables by setting them in the
ervironment. InBourne-compatible shells, you can do that on the command lm#ik

$ CXX="g++ —traditional’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CXX
C++ compiler program. The defaultds+.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémmpymmon
to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form-l foo—I bar. The configurescript will append to this, rather
than replace it. Itis common to usBBS=-L/usr/local/lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so yhesdritse
included in the next release.

BUILDING SRECORD
All you should need to do is use the
% make
...lots of output...
%
command and ait. Whenthis finishes you should see a directory cabé@dcontaining three files:
srec_cat srec_cmpmandsrec_info

Reference Manual SRecord 16

Build(SRecord) Build(SRecord)

srec_cat srec_catprogram is used to manipulate andw@hEPROM load ifes. For more information,
seesrec_cafl).

srec_cmp
The srec_cmpprogram is used to compare EPROM loigeksf For more information, see
srec_cmfl).

srec_info
The srec_infoprogram is used to print information about EPROM ldled f For more
information, searec_infd1).

If you have GNU Groff installed, the build will also createstc/reference.pBle. Thiscontains the
README file, this BUILDING file, and all of the man pages.

You can remee the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%
command. ® remove dl of the abwe files, and also renve the Makefileandlib/config.handconfig.status
files, use the
% make distclean
...lots of output...
%
command.

The file etc/configuein is used to createonfigureby a GNU program calledutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version alitoconf.

Windows NT
It is possible to build SRecord on MS Windows platforms, using the Cygwinvi@aecygwin.com) or
DJGPP (seswww.delorie.com/djgpp) environments. Thigprovides the “porting layer” necessary to

run Unix programs on Windes. Thebuild process is exactly as described\aho

You may need to pass in the include path to the Boost libfEnis is most simply done as
CC="gcc —no—cygwin’ \
CXX='g++ —mno—-cygwin —l/usr/include/boost-1_33_1'\

DJGPP akays produces nate bnaries, howeer if you want to ma& native binaries with Cygwini(e.

ones which work outside Cygwin) there is one extra step you need after runairfigure and
before you ruimake. You need to edit thielakefilefile, and add-mno-cygwin to the end of the
CXX=g++line.

Once built (using either tool set) Windows binaries should be testable in the same way as described in the
next section. Howeer, there may be some CRLF issues in the text file comparisons whielafse
negdives, depending on the CRLF setting of your Cygwin file system when you unpacked the tarball.

TESTING SRECORD
The SRecordpackage comes with a test suif@ run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests ta& a ew ®conds each, with avievery fast, and a couple very globut it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

Reference Manual SRecord 17

Build(SRecord) Build(SRecord)

INSTALLING SRECORD
As explained in th&ITE CONFIGURATIOMection, abee, the SRecorcpackage is installed under the
lusr/localtree by dediult. Usethe——prefix=PATH option toconfigureif you want some other path.
More specific installation locations are assignable, use-thelp option toconfigurefor details.

All that is required to install th8Recordpackage is to use the

% make install

...lots of output...

%
command. Contrabf the directories used may be found in the firet fimes of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tbenfigurescript, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with tB&ecordpackage, please do not hesitate to contact the author at
Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome. Please malkre “srecord” appears in the Subject: line.

When reporting problems, please include the version numbar lgy the
% srec_cat —version
srecord version 1.62.D001
...warranty disclaimer...
%
command. Pleas#o not send this example; run the program for the exact version number.

COPYRIGHT
srecordversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The SRecordpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

It should be in th&.ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 18

New Format(SRecord) Ne Format(SRecord)

NAME
How to add a ne&v file format

DESCRIPTION
This section describesWwdo add a nev file format. It's nostly a set of reminders for the maintainér
you want a format added to the distribution, use this method and e-mail the maintainer a patch (generated
with diff -Nur , usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchis an eho of the class hierarghmaking it easy to guess the filename of a class,
and to work out the appropriate file name of @ ckass. Yu get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than
continually changing directories up and down the source tree. All of the file namesabsione this.

The following files need to be creates for avriermat.

srecord/output/filelamecc
This file is hav to write the ngv format. Tke a bok at the other files in the same directory for
examples. Alsaheck oussrecord/output/file.landsrecord/output.tior various helper methods.

srecord/output/filelameh
This is the class declaration for the abdle.

srecord/input/filehamecc
This file is hav to read the n& format. Bke a bok at the other files in the same directory for
examples. Alsaheck oussrecord/input/file.randsrecord/input.Hor various helper methods.

srecord/input/filehameh
This is the class declaration for the abdle.

man/man5b/srecameb
This file describes the formatake a bok at the other files in the same directory for examples.

If you need to describe something as “stupid”, as is all too often the cadieesesgrus.com
to find a synogm. Usethe following command

find man/. —type f | xargs grep -i synonym
to male aure it hasrt been used yet.

testh/tnnmna.sh
You may have roticed that SRecord comes with a lot of tedsu ae more likely to get the
patch for your n& format accepted rapidly if it comes with at least one test for its output class,
and at least one test for its input class.

If your filter has endian-ness, add tests for each endian.

Modified Files
The following files need to be updated to mention the feemat.

srecord/srecord.h
Add the n& include file to the list. This file controls what files are installed into the
{usr/include directory Not all of them, just the public interface.

etc/README.man
Mention the n& format in the section of this file which describes the supported file formats.

etc/index.html
Mention the n& format in the section of this file which describes the supported file formats.

srecord/arglex/tool.h
Add the nev format to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “ fleésuf

Reference Manual SRecord 19

New Format(SRecord) Ne Format(SRecord)

srecord/arglex/tool.cc
Add the nev format to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and
“ Little_Endian” sufixes.

srecord/arglex/tool/input.cc
Add the nev format to the code which parses input formats.

srecord/arglex/tool/output.cc
Add the nev format to the code which parses output formats.

srecord/input/file/guess.cc
Add the n&v format to the list of formats which are tested.

man/manl/srec_input.1

Mention the n& format in the section of this file which describes the supported input file
formats.

man/manl/srec_cat.1
Mention the ne format in the section of this file which describes the supported output file
formats.
Makefile
Actually, the system the maintainer uses automatically generates this file, but if ydwsirgg’
Aegis you will need to edit this file for your own use.
Tests

You may have roticed that SRecord comes with a lot of teMsu ae more likely to get the patch for your

new format accepted rapidly if it comes with at least one test for its output class, and at least one test for its
input class.

If your filter has endian-ness, add tests for each endian.

IMPLEMENT ATION ISSUES

In implementing a ne file format, there are a couple of philosophical issues which affect technical
decisions:

Be liberal in what you accept
Where &er possible, consume the widest possible interpretation of valid data. This includes
treating mandatory input fields as optioralg(file headers andkecution start addresses), and
coping with input definitions to their logical extremesy(255 byte data records in Motorola
format). Checksumshould alvays be checked on input, only ignore them if the —ignore-
checksums command line option has beeargi Absurdline lengths must be tolerated.

Be conservate in what you produce
Even when the input is questionable, the output producadeby catmust alvays be strictly
conforming with the format definition (except as mandated by command line options, see below).
Checksums, if the format has them, mustagts be correct on output. Line lengths should
default to something reasonable (about 80 characters or less).

Eat Your Own Dog Food
You input class must ahys be able to consume what your output class produces, no matter what
combination of command line options (see below) has been selected.

Round Trip
In general, what went in is what comes out.

« The data may be re-arranged in ordee line lengths may change, but the same data should
go out as came in. (The data should be unchangedfeahe format changed, assuming
equally capable formats.) Tiseec_cmfl) command may be used to verify this.

« If the input has no header record, the output should vetdme either (if at all possible).
This means not automatically inserting a header record if the output file code sees data as the

Reference Manual SRecord 20

New Format(SRecord) Ne Format(SRecord)

first method call. (The —disable=header option affects this, too.)

e If the input has nox@cution start address record, the output should nat bze either (if at
all possible). This means not automatically insertingx@cwion start address record if the
output file code does not see one by the time the destructor is called. (The —disgble=e
start-addr flag affects this, t0o.)

* Write at least onéestthat does a “round trip” of data through thevrifermat and back again,
execising aly interesting boundary conditions along the wag.data records spanning
segment boundaries).

Holes Do not to fill in holes in the data. That said, sometimedgwoeto fill holes in the data. This
happens, for example, when a 16-bit format is faced with an 8-bit byte of data for one or other
half of a 16-bit verd. Ifthere is no other way around it, call the fatal_alignment_error method,
which will suggest a suitable input filter.

OPTIONS
There are also some command line arguments you will needetmtalaccount:

—address-length
This options is used to specify the minimum address length, if yaufarenat has a choice
about hav mary bytes of address it produces.

—data-only
This option implies all of thedisable=header —disable=data-count —disable=exec-start-addr
and-disable=footeroptions. Onlythe essential data records are produced.

—disable=header
If this option is used, no header records are to be produced (or minimal header records). This is
available as thenable_header_flag class variable in the methods of your dedidass.

—disable=data-count
If this option is used, no data record count records are to be produced. Thikidaas the
enable_data_count_flag class variable in the methods of your dedidass.

—disable=exec-start-addr
If this option is used, naxecution start address records are to be produced. Thisilialde as
theenable_goto_addr_flag class variable in the methods of your dedidass.

—disable=footer
If this option is used, no end-of-file records are to be produced. Thiailstde as the
enable_footer_flag class variable in the methods of your dedidass.

—enable=optional-address
If this option is used, in combination with a format that does nat Braaddress on\ery line,
the the first zero address nydoe amitted. All subsequent addresses are not optional, just the
first zero address. Defaults to disabled.

—ignore-checksums
If this flag is set, your file input methods must pareenot checkchecksums, if the format has
checksums. du can tell if you need to use checksums by callingiige checksums()
method within the implementation of your ded dass. Thionly applies to input; output must
always produce correct checksums.

—line-length
Where your output format is text, and there exists the possibility of putting more or less text on
each line ¢.g.the Motorola format allows a variable number of data bytes per record) then this
should be controllable. This manifests in #uelress_length_set and
preferred_block_size_get methods you must implement in your ded dass.

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if tiyedon’t haveto be extensily reformatted.

Reference Manual SRecord 21

New Format(SRecord) Ne Format(SRecord)

Indent increments are four characters. Do not use tab characters at all, nobody camagide thwy are
supposed to be. Line length is 80 characters or feweeceptions.

Please follav the existing covention of alvays using Doxygen comments on all your instance variables
and methods,ven for private methods. Alays document all arguments of all method&negrivate
methods, usin@paramtags; see existing style. dlys use whole sentences in your Doxygen
documentation, see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please usef“dur”, as this will include your nefiles in the patch, and you will
not need additional attachments in your emB#ches are preferredver tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have o write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to hae the maintainer write your mefile format or nev filter for you. Howeer, if you want
it done for nothing, you will be put at the end of a (very) long queue of gthgs open source work the
maintainer has yet to dd‘ou can jump the queue if you want to pay the maintainer to do the work for you.

The maintaines rates are AU$100 per hour.

A well document n& format typically takes six hours to write and test, this includes both reading and
writing the nev format. Awell documented nefilter typically takes three hours to write and test.

Examples ma& these tasks easielPoor documentation makes these taske takger A mystery format
that requires neerse engineering may takeuchlonger; ask again once youvesfigured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Peter Milleand they will be GNU GPL licensed. If yoneeda
format or filter written, it has value to you; the issue of freeloaders isviargle

Corversely, integrating complete open source contributions and patches ig@iseand usually done as
promptly as time permits.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
M* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 22

New Filter(SRecord) Ne Filter(SRecord)

NAME
How to add a nev filter

DESCRIPTION
This section describesWwdo add a nev filter. It's mostly a set of reminders for the maintaindryou
want a filter added to the distribution, use this method and e-mail the maintainer a patch (generated with
diff -Nur , usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchis an e&ho of the class hierarghmaking it easy to guess the filename of a class,
and to work out the appropriate file name of @ ckass. Yu get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than
continually changing directories up and down the source tree. All of the file namesabsione this.

The following files need to be created for avrféter.

srecord/input/filtemamecc
This file is hav to process the nefilter. Take a bok at the other files in the same directory for
examples. Alsaeadsrecord/input.randsrecord/input/filter.nfor various helper methods.

srecord/input/filtemameh
This is the class declaration for the abdle.

srecord/input/filter/messagelmecc
If your filter needs all of the data to be known before it can proceed, or it needs all of the data to
appear in ascending address orderive from thesrec_input_filter_message class,
instead. Thigakes care of all data handling, you onlyéd# write the method that computes the
result from the dataTake a bok at the other files in the same directory for examples.

srecord/input/filter/messageimeh
This is the class declaration for the abdle.

testh/tnnmna.sh
You may have roticed that SRecord comes with a lot of tedsu ae more likely to get the
patch for your ne filter accepted rapidly if it comes with at least one test.

Modified Files
The following files need to be updated to mention the fileer.

srecord/srecord.h
Add the n& include file to the list. This file controls what files are installed into the
{usr/include directory Not all of them, just the public interface.

etc/README.man
Mention the ne filter in the section of this file which describes the supported filters.

etc/index.html
Mention the ne filter in the section of this file which describes the supported filters.

srecord/arglex/tool.h
Add the ne filter to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “ fleésuf

srecord/arglex/tool.cc
Add the ne filter to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and
“ Little_Endian” sufixes.

srecord/arglex/tool/input.cc
Add the ne filter to the code which parses input filters.

If your filter has endian-ness, add your command line tokens to the switch in the
srecord::arglex_tool::get_endian_by token method.

Reference Manual SRecord 23

New Filter(SRecord) Ne Filter(SRecord)

man/manl/o_input.so
Mention the n filter in the section of this file which describes the supported input filters.

Makefile
Actually, the system the maintainer has Aegis automatically generate this file, but if you aren’t
using Aegis you will need to edit this file for your own use.

Tests
You may have roticed that SRecord comes with a lot of tessu ae more likely to get the patch for your
new filter accepted rapidly if it comes with at least one test.

If your filter has endian-ness, add tests for each endian.

IMPLEMENT ATION ISSUES
In implementing a ne filter, there are a couple of philosophical issues which affect technical decissions:

» Be liberal in what you accept. Wheneeepossible, consume the widest possible interpretation of
“valid” data. You especially need to cope with data with holes, and data records out gfandidata
records not nicely aligned.

If your filter has endian-ness, add tests for each endian.

» Be conservate in what you produce. Even when the input is weird, the output produced by the filter
must be conformingE.g.the byte-swap filter still works when it has only one of the lyites, and the
other is a hole; it swaps the byte and the hole.

» If the input has no header record, the output should et dme either.
» If the input has noecution start address record, the output should nat bze either.

» Do not to fill in holes in the data, unless you are a writing a “fill” filtSee the
srecord/input/filter/message.cc file for an example of issuing a warning in the presence
of holes.

» If the new filter is supposed to be its owrvanse €.g. byte-swap), or a pair of filters are supposed to be
inverses €.g.split and unsplit) be sure to write a test to confirm this. The tests shausize all of the
boundary conditionse(g.around the edges of holes, extremes of data ranges).

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if tiyedon’t haveto be extensily reformatted.

Indent increments are four characters. Do not use tab characters at all, nobody camagide thwy are
supposed to be. Line length is 80 characters or feveeceptions.

Please follav the existing covention of alvays using Doxygen comments on all your instance variables
and methods,ven for private methods. Alays document all arguments of all method&negxrivate
methods, usin@paramtags; see existing style. dlys use whole sentences in your Doxygen
documentation, see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please usef“dMur”, as this will include your nefiles in the patch, and you will
not need additional attachments in your emB#ches are preferredrer tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have o write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to hae the maintainer write your mefile format or nev filter for you. Howeer, if you want
it done for nothing, you will be put at the end of a (very) long queue of gthes open source work the
maintainer has yet to dd‘ou can jump the queue if you want to pay the maintainer to do the work for you.

The maintaines rates are AU$100 per hour.

A well document n& format typically takes six hours to write and test, this includes both reading and

Reference Manual SRecord 24

New Filter(SRecord) Ne Filter(SRecord)

writing the nev format. Awell documented mefilter typically takes three hours to write and test.

Examples ma& these tasks easielPoor documentation makes these taske takger A mystery format
that requires nerse engineering may takeuchlonger; ask again once youvesfigured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Peter Milleand they will be GNU GPL licensed. If yoneeda
format or filter written, it has value to you; the issue of freeloaders isviargle

Corversely, integrating complete open source contributions and patches ig@iseand usually done as
promptly as time permits.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 25

srec_cat(1) srec_cat(1)

NAME
srec_cat — manipulate EPROM load files

SYNOPSIS
srec_cat[option...]filename..
srec_cat —Help
srec_cat -VERSion

DESCRIPTION
The srec_catprogram is used to assemble theegiinput files into a single outputd. Theuse of filters
(see below) allows significant manipulations to be performed by this command.

Data Order
The data from the input files is not immediately written to the output, but is stored in memory until the
complete EPROM image has been assembled. Data is then written to the output file in ascending address
order The original ordering of the data (in those formats capable of random record ordenmioty) is
preserved.

Data Comparison
Because input record order is not preserved, textual comparison of input and output (sudiffél) the
tkdiff(1) commands) can be misleading. Not only can lines appear in different address orders, but line
lengths and line termination can differ as well. Usestlee_cmgl) program to compare .wEPROM load
files. Ifa text comparison is essential, run both files throughsttee cafl) program to ensure both files to
be compared v& identical record ordering and line lengths.

Data Conflicts
The storing of data in memory enables the detection of data conflicts, typically caused by linker sections
unintentionally eerlapping.

» A warning will be issued for each address which is redundantly set to the same value.

» Afatal error will be issued if greddress is set with contradictorglues. © avoid this error use an
—exclude —withinfilter (seesrec_inpufl)) or, to make it a warning, use themultiple option (see
below).

» A warning will be issued for input files where the data records are not in strictly ascending address order.
To wuppress this warning, use thdisable-sequence-warningption (see below).

These features are designed to detect problems which faceltib debug, and detects théeforethe
data is written to an EPROM and run in your embedded system.

INPUT FILE SPECIFICATIONS
Input may be qualified in tvways: you may specify a data file or a data generdbomat and you may
specify filters to apply to them. An input file specification looke fiis:
data-file[filter ...]
data-generatof filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looksdik
filenam¢ format][—ignore-checksums]
The default format is Motorola S-Record format, imanyothers are also understood.

Data Generators
It is also possible to generate data, rather than read it frden &6u may use a generator anywhere you
could use aile. Aninput generator specification looksdilthis:
—GENerate address-range-data-source
Generators include random data and various forms of constant data.

Common Manual Page
Seesrec_inpufl) for complete details of input speeifs. Thisdescription is in a separate manual page
because it is common to more than one SRecord command.

Reference Manual SRecord 26

srec_cat(1) srec_cat(1)

OPTIONS
The following options are understood:

@filename
The named text file is read for additional command ligeiraents. Aguments are separated by
white space (space, tab, newlir&). Thereis no wildcard mechanism. There is no quoting
mechanism. Commentshich start with # and extend to the end of the line, are ignored.
Blank lines are ignored.

—Output filename] format]
This option may be used to specify the output file to be used. The special file name “~[rq] is
understood to mean the standard output. Output defaults to the standard output if this option is
not used.

Theformatmay be specified as:

—Absolute_Object_Module_Format
An Intel Absolute Object Module Format file will be written. (Seec_aom(5) for a
description of this file format.)

—Ascii_Hex
An Ascii-Hex file will be written. (Seesrec_ascii_he) for a description of this file
format.)

—ASM [prefix][—option..]
A series of assembler DB statements will be written.

The optionaprefix may be specified to change the names of the symbols generated.
The defaults toéprom " if not set.

Several options areailable to modify the style of output:

—Dot_STyle
Use "dot" style pseudo-ops instead afrds. For examplebyte instead of
theDBdefault.

—HEXadecimal_STyle
Use hexadecimal numbers in the output, rather than the default decimal
numbers.

—Section_STyle
By default the generated assemble of placed at the correct addreS9R&ng
pseudo-ops. Sectistyle output emits tables of section addresses and
lengths, so the data may be related at runtime.

—A430 Generate output which is compliant to ##30.exe compiler as it is used,
e.g.in IAR Embedded Wrkbench. Thiss short-hand for —section-style
—hex-style

—CL430 Generate outpwthich is Code Composer Essentials complia@tthe
compiler of it. This is short-hand for —section-style —hex-style —dot-style

—Output_Word
Generate output which is in two-byte words rather than bytes. This assumes
little-endian words; you will need to use the —Byte-Swap filter if your target
is big-endian. No attempt is made to align the words orgo aldress
boundaries; use and input filter such as
input-file —fill OxFF —within input-file
—-range-pad 2
to pad the data to whole words first.

Reference Manual SRecord 27

srec_cat(1) srec_cat(1)

—Atmel_Generic
An Atmel Generic file will be written. (Sesrec_atmel_gener{) for a description of
this file format.)

—-BASic A series of BASIC [ATA statements will be written.

-B-Record
A Freescale MC68EZ328 Dragonball bootstrap b-record format file will be written.
(Seesrec_brecords) for a description of this file format.)

—-Binary
A raw hinary file will be written. If you get unexpected resytsasesee the
srec_binary5) manual for more information.

—C-Array [identifier][—option..]
A C array defintion will be written.
The optionaidentifieris the name of the variable to be definedygus if not
specified.
—INClude
This option asks for an include file to be generated as well.

-No-CONST
This options asks for the variables to not use the caystdid (they are
declared constant be default, so thay#re placed into the read-only
segment in embedded systems).

—-C_COMpressed
These options ask for an compressed c-array whose memory gaps will not be
filled.

—Output_Word
This option asks for an output which is in words not in bytes. This is little
endian, so you may need to

—-COE This option says to use the Xilinx Céefent File Format (.coe) for output. (See
srec_coéb) for a description of this file format.)

—COsmac
An RCA Cosmac EIf format file will be written. (Sseec_cosmg®) for a description
of this file format.)

—-Dec_Binary
A DEC Binary (XXDP) format file will be written. (Sesec_dec_binarp) for a
description of this file format.)

—Elektor_Monitor52
This option says to use the EMONS52 format file when writingitee {See
srec_emon53) for a description of this file format.)

—FAlrchild
This option says to use the Fairchild Fairbug format file when writinglthe(Gee
srec_faichild(5) for a description of this file format.)

—Fast_Load
This option says to use the LSI Logic Fast Load format file when writindléhe(See
srec_fastloa¢b) for a description of this file format.)

—Formatted_Binary
A Formatted Binary format file will be written. (Seesc_formatted_binafp) for a
description of this file format.)

Reference Manual SRecord 28

srec_cat(1)

srec_cat(1)

—-FORTH [—option]

A FORTH input file will be written. Each line of output includes a byte value, an
address, and a command.

-RAM The store command is C! This is the default.

-EEPROM
The store command is EEC!

—Four_Packed_Code

This option says to use the PFC format file when writingitee {Seesrec_fpd5) for
a description of this file format.)

—HEX_Dump

A human readable hexadecimal dump (including ASCII) will be printed.

-IDT An IDT System Integration Manager (IDT/sim) binary file will be written. (See
srec_id{5) for a description of this file format.)

—-Intel An Intel hex format file will be written. (Sesrec_inte(5) for a description of this file
format.) Thedefault is to emit “i32hex” 32-bit linear addressing; if you want “i16hex”
20-bit extended segment addressing use-#ugress-length=3option, if you want
“iBhex” 16-bit addressing use th@ddress-length=2option.

—Intel_HeX 16

An Intel-16 he format (INHX16) file will be written. (Seserec_intel1§5) for a
description of this file format.)

—Lattice_Memory_Initialization_Format [width]

The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for
writing only. (A.k.a.-MEM) (Seesrec_mertb) for a description of this file format.)

—Memory_Initialization_File [width]

Memory Initialization File (MIF) by Altera format will be written. Thedth defaults
to 8 bits. (Searec_mif5) for a description of this file format.)

-Mips_Flash_Big_Endian
—Mips_Flash_Little_Endian

MIPS Flash file format will be written. (Seseec_mips_flas{®) for a description of
this file format.)

-MOS_Technologies

An Mos Technologies format file will be written. (Ssec_mos_tedb) for a
description of this file format.)

—Motorola [width]

-MsBin

A Motorola S-Record file will be written. (Seeec_motorol$) for a description of
this file format.) This is the default output format. By default, the smallest possible
address length is emitted, this will be S19 for data in the first 64KB; if you wish to
force S28 use theaddress-length=3option; if you wish to force S37 use the
—address-length=4option

The optionawidth argument describes the number of bytes which form each address
multiple. For normal uses the default of one (1) byte is appropriate. Some systems
with 16-bit or 32-bit targets mutilate the addresses in the file; this option will imitate
that behaviar Unlike most other parameters, this one cannot be guessed.

This option says to use the Windows CE Binary Image Data Format to write the file.
Seesrec_msbi(b) for a description of this file format.

—Needham_Hexadecimal

Reference Manual

This option says to use the Needham Electronics ASCII file format to write the file.
Seesrec_needha(b) for a description of this file format.

SRecord 29

srec_cat(1)

srec_cat(1)

—Ohio_Scientific
This option says to use the Ohio Scientific hexadecimal formatsr8eeos65(b) for
a description of this format.

-PPB This option says to use the Stag Prom Programmer binary formasreseepls) for
a description of this format.

—-PPX This option says to use the Stag Prom Programmer hexadecimal format. See
srec_ppx5) for a description of this format.

-SIGnetics
This option says to use the Signeticg fmmat. Searec_signetid®) for a description
of this format.

—SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Sewec_spasip) for a description of this format.

—-SPAsm_Little_Endian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Buwith the data the other way around.

-STewie
A Stewie binary format file will be written. (Sesec_stewigb) for a description of this
file format.)

—Tektronix
A Tektronix he format file will be written. (Sesrec_tektronifs) for a description of
this file format.)

—Tektronix_Extended
A Tektronix extended heformat file will be written. (Sesrec_tektronix_extendés)
for a description of this file format.)

—Texas_Instruments_Tagged
A TI-Tagged format file will be written. (Sesrec_ti_tayged(5) for a description of
this file format.)

—-Texas_Instruments_Tagged_16
A Texas Instruments SDSMA320 format file will be written. (See
srec_ti_t@yged_16(5) for a description of this file format.)

—Texas_Instruments_TeXT
This option says to use thexas Instruments TXT (MSP430) format to write the file.
Seesrec_ti_tx(5) for a description of this file format.

-TRS80
This option says to use the Radio Shack TRS-80 object file format to wriieethEde
srec_trs8@5) for a description of this file format.

-VHdI [bytes-per-word name]]
A VHDL format file will be written. Thebytes-per-wordlefaults to one, theame
defaults toeprom. Theetc/x_defs_pack.vHde in the source distribution contains an
example ROM definitions pack for the type-independent outjgati may need to use
the —byte-swap filter to get the byte order you want.

-VMem [memory-widtH
A Verilog VMEM format file will be written. Thenemory-widtimay be 8, 16, 32, 64
or 128 bits; defaults to 32 if unspeed. (Seesrec_vmeirfdb) for a description of this
file format.) You may need to use the —byte-swap filter to get the byte order you want.

Reference Manual SRecord 30

srec_cat(1) srec_cat(1)

-WILson
A wilson format file will be written. (Sesrec_wilsoi) for a description of this file
format.)

—Address_Lengthnumber
This option maxy be wsed to specify the minimum number of bytes to be used in the output to
represent an address (padding with leading zeros if necessary). This helps when talking to
imbecilic EPROM programmer devices which do not fully implement the format specification.

—Data_Only
This option implies the-disable=header —disable=data-count —disable=exec-start-address
and-disable=footeroptions.

—ENablefeature-name
This option is used to enable the output of a named feature.

Header This feature controls the presence of header records, records which appear before the
data itself. Headers often, but notvays, include descripte ext.

Data_Count
This feature controls the presence of data record count records, which appear aftre the
data, and state thomary data records preceeded them. Usually a data integrity
mechanism.

Execution_Start Address
This feature controls the presence xdagition start address records, which is where the
monitor will jump to and starbecuting code once the xéile has finished loading.

Footer This feature controls the presence of a file termination record, or#sanotouble
as an recution start address record.

Optional_Address
In formats that hae the address and the data separated or partially separated (as
opposed to having a complete addressanyerecord) it is possible to disable emitting
the first address where that address would be zero, as these format often default the
address to zero if no address is seen beofre the first data record. This is disabled by
default, the zero address isvays emitted.

Not all formats hee dl of the abae features. Noall formats are able to optionally omityaor
all the abwoe features. Featumames may be abbreviateddi®ommand line option names.

-DISablefeature-name
This option is used to disable the output of a named feature. Seerthisleoption for a
description of the\ailable features.

—IGnore_Checksums
The-IGnore-Checksumsoption may be used to disable checksum validation of input files, for
those formats which la checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if thare missing) but their values are not chextk Usedafter an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address ord@nly one warning is issued per inpiief Thisis the default.

Note: the output okrec_catl) is alvays in this order.

Note: This option must be usdxforethe input fle. Thisis because if there areveeal files on
the command line, each may need different settings. The setting remains in force until the next
-Disable_Sequence_Warningsption.

Reference Manual SRecord 31

srec_cat(1) srec_cat(1)

—-Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be usdxforethe offending inputife. Thisis because if there are
several files on the command line, each may need different settings. The setting remains in force
until the next-Ensable_Sequence_Warninggption.

—CRLF This option is short-hand for thdine-termination=crlf option. For use with harebrained
EPROM programmer devices which assume all the world uses Evd &ifirating systers’line
termination.

—-Line_Termination style-name
This option may be used to specify line termination style for text output. The default is to use the
host operating systemtefault line termination style (but Cygwin befea as if t's Unix). Use
this option with caution, because it will also introduce extra (i.e. wrong) CR bytes into binary
formats.

Carriage_Return_Line_Feed
Use the CRLF line termination style, typical of DOS and M$ Windows.

NewLine
Use the NL line termination style, typical of Unix and Linux.

Carriage_Return
Use the CR line termination style, typical of Apple Macintosh.

All other line termination style names will produce a fatal er®yle names may be abbreviated
like command line option names.

-Line_Length number
This option may be used to limit the length of the output lines to atrmos#bercharacters. (Not
meaningful for binary file format.) Defaults to something less than 80 characters, depending on
the format. If you need to control the maximum number of bytes in each output record, use the
——Ouput_Block_Sizeoption.

—HEAder string
This option may be used to set the header comment, in those formats which support it. This
option implies the-enable=headeroption.

If you need to inject binary data into the headse the URL encoding that uses % followed by
two hexadeimal characterd=or example a backspace would be encoded as “%08".

—Execution_Start_ Addressnumber
This option may be used to set thxeauition start address, in those formats which support it. The
execution start address is where the monitor will jump to and stectigng code once the hex
file has finished loading, think of it as a “goto” address. Usually ignored by EPROM
programmer dédces. Thisoption implies the-enable=exec-start-addmoption.

Please note: thexecution start address is a different concept than the first address in memory of
your data. If you want to change where your data starts in meuoseryhe-offsetfilter.

—Output_Block_Sizenumber
This option may be used to specify the exact number of data bytes to appear in each output
record. Therare format-specific limitations on this value, you will get an error if the value isn’t
valid. If you need to control the maximum number of characters on a line of text output, use the
—-Line_Length option.

—Output_Block_Packing
From time to time, with large files, you may notice that your data records are spit unexpectedly
on output. This usually happens where record lengths are not a power of 2. If this bothers you

(or your comparison tools) this option may be used to repack the output so that SRecord’s
internal block boundaries are not visable in the output.

Reference Manual SRecord 32

srec_cat(1) srec_cat(1)

—Output_Block_Alignment
This option is similar to theOutput_Block Packing option, except that short records are used
after holes to cause subsequent records to be placed on a block size boundary.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. Awarning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optionau must use consecug s2quences of optional letters.

All options are case insens# you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “-~HEL” and “~h" are all interpreted to mearktfedp option. The
argument “~hlp” will not be understood, because conseegtitional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&edocatare long, this means
ignoring the extra leading “~". The-*-option=valu€’ corvention is also understood.

EXIT STATUS
The srec_catcommand will exit with a status of 1 onyagrror. The srec_catcommand will only exit with
a datus of 0 if there are no errors.

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 33

srec_cmp(1) srec_cmp(1)

NAME
srec_cmp — compare 0lEPROM load files for equality

SYNOPSIS
srec_cmpl[option..]filename..
srec_cmp —Help
srec_cmp -VERSion

DESCRIPTION
The srec_cmpprogram is used to comparedd#PROM load files for equalityThis comparison is
performed irrespeaté d the load order of the data in each of the files.

INPUT FILE SPECIFICATIONS
Input may be qualified in tvways: you may specify a data file or a data generdbomat and you may
specify filters to apply to them. An input file specification looke liis:
data-file[filter ...]
data-generatof filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looksdik
filenam¢ format][—ignore-checksums]
The default format is Motorola S-Record format, imanyothers are also understood.

Data Generators
It is also possible to generate data, rather than read it frden &6u may use a generator anywhere you
could use aile. Aninput generator specification looksdilthis:
—GENerate address-range-data-source
Generators include random data and various forms of constant data.

Common Manual Page
Seesrec_inpufl) for complete details of input speeifs. Thisdescription is in a separate manual page
because it is common to more than one SRecord command.

OPTIONS
The following options are understood:

@filename
The named text file is read for additional command ligeiraents. Aguments are separated by
white space (space, tab, newlir&). Thereis no wildcard mechanism. There is no quoting
mechanism. Commentshich start with # and extend to the end of the line, are ignored.
Blank lines are ignored.

—Help
Provide some help with using tkeec_cmpprogram.

—IGnore_Checksums
The-IGnore-Checksumsoption may be used to disable checksum validation of input files, for
those formats which a dhecksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if thare missing) but their values are not chextk Usedafter an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address ord@nly one warning is issued per inpiief Thisis the default.

Note: the output okrec_catl) is alvays in this order.

Note: This option must be usdxforethe input fle. Thisis because if there areveeal files on
the command line, each may need different settings. The setting remains in force until the next
-Disable_Sequence_Warningsption.

Reference Manual SRecord 34

srec_cmp(1) srec_cmp(1)

—-Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be usdxforethe offending inputife. Thisis because if there are
several files on the command line, each may need different settings. The setting remains in force
until the next-Ensable_Sequence_Warninggption.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. Awarning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

-VERSion
Print the version of therec_cmpprogram beingxecuted.

—-Verbose
This option may be used to obtain more information abowtdmal where the tefiles differ.
Please note that this takes longed the output can be voluminous.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optionau must use consecug ssquences of optional letters.

All options are case insensi you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “-HEL” and “~h" are all interpreted to meartfedp option. The
argument “~hlp” will not be understood, because conseegtitional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&edocmpare long, this means
ignoring the extra leading “~". The-*-option=valu€’ corvention is also understood.

EXIT STATUS
The srec_cmpzommand will exit with a status of 1 onyagrror. The srec_cmpommand will only exit
with a status of O if there are no errors.

EXAMPLE
A common use for therec_cmpommand is to verify that a particular signature is present in the code. In
this example, the signature is in a file called“signature[rqg], and the EPROM image is in a file called
“image[rq]. e assume thgare both Motorola S-Record format, although this will work for all formats:

srec_cmp signature image —crop —within signature

The signature need not be at the start of mepmoryneed it be one single contiguous piece of memiory
the abwe example, the portions of the image whiclvéghe same address range as the signature are
compared with the signature.

COPYRIGHT
srec_cmpversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_cmpprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cmp
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cmp —VERSion Licerissmmmand.

Reference Manual SRecord 35

srec_cmp(1) srec_cmp(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 36

srec_aamples(1) srec xamples(1)

NAME
srec_examples — examples ofahtm use SRecord

DESCRIPTION
Thesrec_cattommand is very powerful, due to the ability to combine the the input filters in almost
unlimited ways. Thismanual page describes avfef them.

This manual page describesahto use the various input files, input filters and input generators. But these
are only examples, for more complete details, sesrtite inpugl) manual page.

The Commands Lines Ae Too Long
If you are marooned on an operating system with absurdly short command line length limits, some of the
commands which folle may be too long.You can get around this handicap by placing your command line
in a file, sayfred.txt and then tellsrec_cafl) to read this file for the rest of its command linesg likis

srec_cat @fred.txt

This also has the advantage of allowing comments, allowing you to write your command line ofgtions o
several lines, andeen indenting to mad& the command more cleaComments start at &* and extend to
the end of the line. Blank lines are ignored.

Of course, you could wabys upgrade to Linux, which has been sucking lessvier2il years nwv.

Your Examples Wanted
If you have a ¢ever way of using SRecord, or a lved a dificult problem with SRecord, you could
contribute to this manual page, making it more usefulferyene. Sengour example in an email to the
email address at the end of this manual page.

CONVERTING FILE FORMATS
The simplest of the thingsec_cafl) can do is corert from one EPROM file format to anothdPlease
keep in mind, as you read this section, that you can dy wfahese things simultaneously in one
command. Thgare only broken out separately to neakem easier to understand.

Intel to Motorola
One of the simplest examples is eenting files from Intel h& format to Motorola S-Record format:

srec_cat intel-file —intel —o srec-file

Note that the format specifier immediately follows the name of the file it is describing. Fitkan
formats that SRecord understands, and it casecbbetween all of them. (Except the assemIB&ASIC,
C and FPGA outputs which are write only.)

Motorola to Intel
Corverting the other way is just as simple:

srec_cat srec-file —o intel-file —intel
The default format is Motorola S-Record format, so it does not need to be specified after the file name.

Different Shapes of the Same Format
It is regrettably common that some addle-pated EPROM programmers only implement a portion of the
specification used to represent theix fikes. For example, some compilers produce “s19” Motorola data
(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that some
blockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 start
records, 32 bit address fields).

It is possible to corert from one Motorola shape to another using-tAedress-Lengthoption:
srec_cat short.srec —o long.srec —address-length=4
This command says to use four byte (32-bit) addresses on output.

This section also applies to Inteifdes, as thg too, hae the ability to select from a variety of address
widths. 7o convert from one Intel shape to another using the saAdidress-Lengthoption:

Reference Manual SRecord 37

srec_aamples(1) srec xamples(1)

srec_cat i32.hex —o i16.hex —address-length=3

This command says to use “i16hex” 20-bit segmented addresses on output. An address length of 4 is the
default (“i32hex” 32-bit linear addressing), and an address length of 2 would request “i8hex” 16-bit
addressing.

Line Lengths
From time to time you will come across a feeble-minded EPROM programmer thatoganivith long
text lines, thg assume that there will onlyer be 46 daracters per line and barf whenytisee the default
line lengths thasrec_catl) writes (or worse, get a stack scribble and crash).

The Motorola S-record format definition permits up to 255 bytes of payload, or libé4 ofiaracters, plus
the line termination. All EPROM programmesisouldhave sufficiently large line buffers to cope with
records this big. e do.

The -line-length option may be used to specify the maximum line length (not including the newline) to be
used on outputFor example, 16 byte payloads for Motorola hex

srec_cat long.srec —o short.s19 —line-length=46

The line length option interacts with the address length option, so some tinkering to optimize for your
particular situation manbe recessary.

Output Block Size
Every once in a while you will come across an ancient daft EPROM programmer thabpanvith long
data records, tlyeassume that there will onlyver be at nost 16 bytes of data per record, and barf when
they see the default 32 byte payloads thiec_cafl) writes (or worse, the buffever-run causes a tall
grass walk that scribbles on your EPROM).

The Intel h& format definition permits up to 255 bytes of payload data per record. All EPROM
programmershouldhave sufficiently large data buffers to cope with records this big. Good luck with that.

The —Output-Block-Size option may be used to specify the record data size to be used orfFoutput.
example, Intel he with 16 byte payloads:

srec_cat long.srec —o short.hex —intel —obs=16
Be careful not to put theobsoption between the output file name and the format specifier.

Just the Data, Please
There are some bonehead EPROM programmers which can only cope with data records, and are unable to
cope with header records oteeution start address records. If yowéahis problem, the-data-only
option can be used to suppress just abesry/thing except the data. The actual effect depends on the
format, of course, because some tlbavethese features anyway.

The—data-only option is short hand. There are four properties which maydisabledor —enabled
separately See thesrec_cafl) man page for a description of theisabledand—enabledoptions.

For example, your neanderthal EPROM programmer requires Motoraleitie header records (S0), but
without data count (S5) records. Not using-tigta-only option has it barf on the data count record, but
using the-data-only option has it barf on the missing header record. Usingdisable=data-count
option would lege the header record intact while suppressing the data count record.

Data Headers
Thesrec_catl) command avays tries to pass through header records unchanged, venémey are
present. leven tries preserg them across file format changes, to the limit the file formats are capable of.

If there is no file header record and you woule lik ald one, or you wish toverride an existing file
header record, use thbeader=string option. You will need to quote the string (to insulate it from the
shell) if it contains spaces or shell meta-characters.

Execution Start Addresses
Thesrec_cafl) command abays tries to pass througleeution start addresses (typically occurring at the
end of the file), whener they are present. Theare adjusted along with the data records by-thiéset
filter. It even tries presers them across file format changes, to the limit the file formats are capable of.

Reference Manual SRecord 38

srec_aamples(1) srec xamples(1)

If there is no recution start address record and you would tik ald one, or you wish toverride an
existing execution start address record, use tegecution-start-addressnumberoption.

Please note: thexecution start address is a different concept than the first address in memory of your data.
Think of it as a “goto” address to be jumped to by the monitor when ihieae is complete. If you want
to change where your data starts in memuasg the-offsetfilter.

Fixing Checksums
Some embedded firmwarewdopers are saddled with featherbrained tools which produce incorrect
checksums, which the more vigilant models of EPROM programmer will not accept.

To fix the checksums on a file, use thignore-checksumsption. For example:
srec_cat broken.srec —ignore-checksums —o fixed.srec

The checksums ibroken.sre@re parsed (it is still and error if there absent) but are not check The
resultingfixed.sredile has correct checksums. Thignore-checksumsoption only applies to input.

This option may be used onyafile format which has checksums, including Intel hex.

Discovering Mystery Formats
See thaVhat Format Is This? section, belw, for hav to discover and comwert mystery EPROM load file
formats.

BINARY FILES
It is possible to corert to and from binaryilies. You can gen mix binary files and other formats together
in the samearec_cafl) command.

Writing Binary Files
The simplest way of reading ax#@le and comerting it to a binary file looks lik this:

srec_cat fred.hex —o fred.bin —binary
This reads the Motorola kéile fred.srecand writes it out to th&ed.binas rav binary.

Note that the data is placed into the binary file at the byte offset specified by the addressexifiléhe he
If there are holes in the data yrere filled with zero. This is, of course, common with linker output where
the code is placed starting at a particular place in menf@ryexample, when you ti@ an image that

starts at 0x100000, the first 1MB of the output binary file will be zero.

You can automatically cancel this offset using a command like
srec_cat fred.hex —offset — —minimum-addr fred.hex —o fred.bin

The aboe mmmand works by offsetting thred.hexfile lower in memory by the least address in the
fred.hexfile’s data.

See also therec_binary5) man page for additional detail.

Reading Binary Files
The simplest way of reading a binary file andwting it looks like this

srec_cat fred.bin —binary —o fred.srec
This reads the binary filieed.binand writes all of its data back out again as a Motorola S-Record file.

Often, this binary istt’exactly where you want it in the address space, because it is assumed to reside at
address zero. If you need to weat around use theoffsetfilter.

srec_cat fred.bin —binary —offset 0x10000 —o fred.srec

You dso need toaid file “holes” which are filled with zeroYou can use the-crop filter, of you could
use the-unfill filter if you dont know exactly where the data is.

srec_cat fred.bin —binary —unfill 0x00 512 -o fred.srec

The abee mmmand remees runs of zero bytes that are 512 bytes long or londgrour file contains
1GB of leading zero bytes, this is going to bevsibmay be better to use thiel(1) command to slice and
dice first.

Reference Manual SRecord 39

srec_aamples(1) srec xamples(1)

JOINING FILES TOGETHER
Thesrec_cattommand takes its name from the UNixi(1) command, which is short for “catenate” or “to

join”. The srec_cattommand joins EPROM load files together.

All In One
Joining EPROM load files together into a single file is simple, just name asfilegnon the command line
as you need:

srec_cat infilel infle2 —o outfile

This example is all Motorola S-Record files, becauseglita’ default format.You can hae multiple
formats in the one command, asrec_cafl) will still work. You dont even haveto output the same
format:
srec_cat infilel —spectrum infile2 —needham\
-0 outfile —signetics
These are all ancient formats, hewet isn’'t uyncommon to hee o mix and match Intel and Motorola
formats in the one project.
Filtering After Joining
There are times when you want to joiroteets of data togetheand then apply a filter to the joined result.
To do this you use parentheses.

srec_cat \

R \
infile —exclude OXxFFFO 0x10000 \
—generate OxFFFO OXFFF8 —repeat-string 'Bananas '\

'y \

-length-b-e OxFFF8 4 \

—checksum-neg-b-e OxFFFC 4 4 \

-0 oultfile

The abee example command catenates an input file (with the generated data area excluded) with a
constant string. This catenated input is then filtered to add a 4-byte length, and a 4-byte checksum.

Joining End-to-End
All too often the address ranges in the EPROM load files walllap. You will get an error if thedo. If
both files start from address zero, because each goes into a separate EPROM, you may need to use the

offset filter:
srec_cat infilel \

infile2 —offset 0x80000 \
-0 outfile

Sometimes you want the ddiles to follov each other exact)yout you dont know the offset in advance:

srec_cat infilel \
infile2 —offset -maximum-addr infilel \
-0 outfile

Notice that where the was a number (0x80000) before, therevia malculation (—maximum-addnfilel).
This is possible most places a number may be used (also —minimum-addr and —range).

CROPPING THE DATA
It is possible to copan BPROM load file, selecting addresses to keep and addresses to discard.

What To Keep
A common activity is to crop your data to match your EPROM locatmur linker may add other junk

that you are not interested mg. at the RAM location. In this example, there is a 1MB EPROM at the
2MB boundary:

srec_cat infile —crop 0x200000 0x300000 \
-0 oultfile

Reference Manual SRecord 40

srec_aamples(1) srec xamples(1)

The lower bound for all address ranges is inekjshe upper bound is exclwsi If you subtract them, you
get the number of bytes.

Address Offset
Just possiblyyou have a noronic EPROM programmeand it barfs if the EPROM image doesgart at
zero. D find out just where idoesstart in memoryuse thesrec_inf¢l) command:

$ srec_info example.srec

Format: Motorola S-Record

Header: extra-whizz tool chain linker
Execution Start Address: 0x00200000
Data: 0x200000 — Ox32AAEF
$

Rather than butcher the linker command file, just offset the addresses:

srec_cat infile —crop 0x200000 0x300000 —offset —0x200000 \
-0 oultfile

Note that the offset gén is negative it has the effect of subtracting that value from all addresses in the
input records, to form the output record addresses. In this case, shifting the image back to zero.

This example also demonstratesvtthe input filters may be chained together: first the crop and then the
offset, all in one command, without the need for temporary files.

If all you want to do is offset the data to start from address zero, this can be automated, sot yraveton’
know the minimum address in advance, by usireg_cak ability to calculate some things on the
command line:

srec_cat infile —offset - —minimum-addr infile \
-0 outfile

Note the spaces either side of the minus sigy, dreemandatory.

What To Throw Away
There are times when you need to exclude an small address range from an EPROM load file, rather than
wanting to keep a small address range. Farcludefilter may be used for this purpose.

For example, if you wish to exclude the address range where the serial number of an embedded device is
kept, say 0x20 bytes at 0x100, you would use a commaeadhiik

srec_cat input.srec —exclude 0x100 0x120 —o output.srec
Theoutput.sredile will have a Iole in the data at the necessary locations.

Note that you can e both —crop and—excludeon the same command line, whigbeworks more
naturally for your situation.
Discontinuous Address Ranges
Address ranges ddrtaveto be a single range, you can build up an address range using more than a single
pair.

srec_cat infile —crop 0x100 0x200 0x1000 0x1200 \
-0 oultfile

This filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest is
dropped. Thiss is more dfcient than chaining acrop and an-excludefilter together.
MOVING THINGS AROUND
It is also possible to change the address of data records, both forwards arartechiis also possible
rearrange where data records are placed in memory.
Offset Filter

The-offsetnumbeffilter operates on the addresses of records. If the number is@dsitiaddresses
move that many bytes higher in memoryegdive values mee lower.

Reference Manual SRecord 41

srec_aamples(1) srec xamples(1)

srec_cat infile —crop 0x200000 0x300000 —offset -0x200000 \
-0 oultfile

The abee example mees the 1MB block of data at 0x200000 down to zero (the offsetgstivé and
discards the rest of the data.

Byte Swapping
There are times when the bytes in the data need to be swappedtiicgietween big-endian and little-
endian data usually.

srec_cat infile —byte-swap 4 —o outfile

This reverses bytes in 32 bit values (4 bytes). The default, if youtdapply a width, is to neerse bytes in
16 bit values (2 bytes)You can actually use grnweird value you like, it doesnéven haveto be a power of
2. Perhap$4 bits (8 bytes) may be useful one day.

Binary Output
You need to watch out for binary files on output, because the holes are filled with ¥etwslOOkB
program at the top of 32-bit addressed memory willereaksB file. Seesrec_binary5) for how
understand andvaid this problem, usually with theoffsetfilter.

Splitting an Image
If you hare a B-bit data bus, but you are usingot@&bit EPROMSs to hold your firmware, you can generate
the even and odd images by using th&Plit filter. Assuming your firmware is in tHemware hexfile, use
the following:

srec_cat firmware.hex —split 2 0 —o firmware.even.hex
srec_cat firmware.hex —split 2 1 —o firmware.odd.hex

This will result in the tw necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),
you need to reme the offset, and then replace it...

srec_cat firmware.hex \
—offset ~ —0x10000 -split2 0\
—offset 0x10000 —o firmware.even.hex
srec_cat firmware.hex \
—offset ~ —0x10000 -split2 1\
—offset 0x10000 —o firmware.odd.hex

Note hav the ability to apply multiple filters simplifies what would otherwise be a much longer script.
Striping
A second use for theSPlit filter is memory striping.

You don’t haveto split into byte-wide parts, you can choose other sizes. It is common to wanvéd con
32-bit wide data into tevset of 16-bit wide data.

srec_cat firmware.hex —split 4 0 2 —o firmware.01.hex
srec_cat firmware.hex —split 4 2 2 —o firmware.23.hex

This is relatvely simple to understand, but you can ugenewider stripes.

In this next example, the hardware requires that 512-byte blocks alternate betweddMsEREenerating
the 4 images would be done as follows:

srec_cat firmware.hex —split 0x800 0x000 0x200 —o firmware.0.hex
srec_cat firmware.hex —split 0x800 0x200 0x200 —o firmware.1.hex
srec_cat firmware.hex —split 0x800 0x400 0x200 —o firmware.2.hex
srec_cat firmware.hex —split 0x800 0x600 0x200 —o firmware.3.hex

Asymmetric Striping
A more peculiar example of striping is the Microchip dsPIC33F microcontrtiterhas a weird memory
storage pattern and thare able to store 3 bytes in an address that should only contain 2 bytes. The result
is a ha file that has zero-filled the top byte (little-endian), and all addresses are doubled from whed the

Reference Manual SRecord 42

srec_aamples(1) srec xamples(1)

in the chip. Here is an example:

S1130000000102000405060008090A000C0ODOEO098
S1130010101112001415160018191A001C1D1EOOCS
S1130020202122002425260028292A002C2D2E00F8
S1130030303132003435360038393A003C3D3E0028

To get rid of the 00 padding bytes, leaving only the 3/4 significant bytes, you also use the splisiffiiter
its additionalwidth argument, lile this:

srec_cat example.srec —split 4 0 3 -0 no_dross.srec
This results in a file with the 00 padding bytes reedo It looks like this:

S113000000010204050608090A0C0D0OE1011121451
S1130010151618191A1C1D1E2021222425262829EC
S11300202A2C2D2E30313234353638393A3C3D3E87

Notice hav the addresses are 3/4 the size, as W&l can reverse this using theunsplit and—fill=0
filters.

Unspliting Images
The unsplit filter may be used toveese the effects of the split filteNote that the address range is
expanded leaving holes between the stripes. By using all the stripes, the complete input is reassembled,
without ary holes.

srec_cat —o firmware.hex \
firmware.even.hex —unsplit 2 0\
firmware.odd.hex -unsplit 21

The abee example reerses the previous 16-bit data busmple. Ingeneral, you unsplit with the same
parameters that you split with.

FILLING THE BLANKS
Often EPROM load files will hae “holes” in them, places where the compiler and linker did not put
arything. For some purposes this is OK, and for other purposes something has to be done about the holes.

The Fill Filter
It is possible to fill the blanks where your data does not lie. The simplest example of this fills the entire
EPROM:
srec_cat infile —fill 0Ox00 0x200000 0x300000 —o outfile

This example fills the holes, if grwith zeros. You must specify a range — with a 32-bit address space,
filling everything generateBugeload files.

If you only want to fill the gaps in your data, and davént to fill the entire EPROM, try:
srec_cat infile —fill 0OxO0 —over infle —o outfile

This example demonstrates the fact that wiheeran aldress range may be specified, Hoger and
—within options may be used.

Unfilling the Blanks
It is common to need to “unfill” an EPROM image after you read it out of a chip. Usitiaiit have had
all the holes filled with OXFF (areas of the EPROM you tprdgram shw as &XFF when you read them
back).

To get rid of all the OxFF bytes in the data, use this filter:
srec_cat infile —unfill OXFF -0 outfile

This will get rid ofall the OXFF bytes, including the ones you actually wanted in there. Therecanays
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile —unfill OXFF 5 -0 outfile

This says that runs of 1 to 4 bytes of OxFF are OK, and that a hole should only be created for runs of 5 or

Reference Manual SRecord 43

srec_aamples(1) srec xamples(1)

more OXFF bytes in awo The second method is to re-fiver the intermediate gaps:

srec_cat outfile —fill OXFF —over outfile \
-0 outfile2

Which method you choose depends on your needs, and the shape of the data in @ddr EB&Rmay
need to combine both techniques.

Address Range Padding
Some data formats are 16 bits wide, and automatically fill with OXFF bytes if it is necessary to fill out the
other half of a word which is not in the data. If you need to fill with a different value, you can use a
command lile this:

srec_cat infile —fill OX0A\
—within infile —range-padding 2\
-0 outfile

This gwes the fill filter an address range calculated from details of the ifputTheaddress range is all

the address rangesvened by data in thanfile, extended downwards (if necessary) at the start of each sub-

range to a 2 byte multiple and extended upwards (if necessary) at the end of each sub-range to a 2 byte
multiple. Thisalso works for larger multiples, #1kB page boundaries of flash chips. This address range

padding works anywhere an address range is required.

Fill with Copyright
It is possible to fill unused portions of your EPROM with a repeating copyright message. Anyone trying to
reverse engineer your EPROMs is going to see the copyright notice in tkedditer.

This is accomplished with minput sources, one from a data file, and one which is generated on-the-fly.

srec_cat infile \
—generate '(' 0 0x100000 —minus —within infile)"\
—repeat-string 'Copyright (C) 1812 Tchaikovsky. "\
-0 oultfile

Notice the address range for the data generation: it takes the address range of your EPROM, in this case
1MB starting from 0, and subtracts from it the address ranges used by the input file.

If you want to script this with the current year (because 1812 is a bit out of date) use thergpel’
substitution (back ticks) ability:

srec_cat infile \

—generate '(' 0 0x100000 —minus —within infile)"\
—repeat-string "Copyright (C) ‘date +%Y" Tchaikovsky. "
-0 oultfile

The string specified is repeatedenand over again, until it has filled all the holes.

Obfuscating with Noise
Sometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.
You can do this with therandom-fill filter.

srec_cat infile —random-fill 0x200000 0x300000 \
-0 outfile

It works just like the—fill filter, but uses random numbers instead of a constant byte value.

Fill With 16-bit Words
When filling the image with a constant byte value daesotk, and you need a constant 16-bit word value
instead, use therepeat-datageneratgrwhich takes an arbitrarily long sequence of bytes to use as the fill
pattern:

srec_cat infile \
—generator (" 0x200000 0x300000 —minus —within infile)"\
—-repeat-data Ox1B 0x08 \
-0 oultfile

Reference Manual SRecord 44

srec_aamples(1) srec xamples(1)

Notice hav the generatos’ address range once agawomls the address ranges occupied byirtfiee’s data.
You haveto get the endian-ness right yourself.

INSERTING CONSTANT DATA
From time to time you will want to insert constant data, or data not produced by your compiler or
assemblerinto your EPROM load images.

Binary Means Literal
One simple way is to a the desired information in @d. To insert the files contents literallywith no
format interpretation, use thénary input format:

srec_cat infile —binary —o outfile

It will probably be necessary to usedfsetfilter to maose the data to where you actually want it within the
image:

srec_cat infile —binary —offset 0x1234 -0 outfile

It is also possible to use the standard input as a data source, which lends itself to being Boripted.
example, to insert the current date and time into an EPROM load file, you could use a pipe:

date | srec_cat — —bin —offset OXFFE3 -0 outfile

The special file name-" means to read from the standard input. The output alatkecommand is
always 29 characters long, and the offset shown will place it at the top of a 64KB EPROM image.

Repeating Once
TheFill with Copyright section, abee, shows hav to repeat a stringuwer and over. We can use a single
repeat to insert a string just once.

srec_cat —generate OXFFE3 0x10000 -repeat-string "date™ \
-0 oultfile

Notice hav the address range for the data generation exactly matches the lengtiatéthieoutput size.
You can, of course, add your input file to the ederec_cafl) command to catenate your EPROM image
together with the date and time.

Inserting A Long
Another possibility is to add the Sedssion commit number to your EPROM image. In this example, we
are inserting it a a 4-byte little-endian value at address 0x0008. ThkerSiah commit number is in the
$versionshell variable in this example:

srec_cat —generate 0x0008 0x000C —constant-l-e $version 4\
infile —exclude 0x0008 0x000C \
-0 oultfile

Note that we use a filter to ensure there is a hole in the input where the version number goes, just in case
the linker put something there.

DATA ABOUT THE DATA
It is possible to add a variety of data about the data to the output.

Checksums
The-checksum-negatie-big-endianfilter may be used to sum the data, and then insert gadveed the
sum into the data. This has the effect of summing to zero when the checksum itself is summed across,
provided the sum width matches the inserted value width.

srec_cat infile \
—crop 0 OXFFFFFC\
—random-fill 0 OXFFFFFC \
—checksum-neg-b-e OXFFFFFC 4 4\
-0 outfile

In this example, we lva an EPROM in the lowest nggbyte of memory The —crop filter ensures we are
only summing the data within the EPROM, and not anywhere else. The —random-fill filterfilelas

Reference Manual SRecord 45

srec_aamples(1) srec xamples(1)

left in the data with randomalues. Finallythe —checksum-neg-b-e filter inserts a 32 bit (4 byte)
checksum in big-endian format in the last 4 bytes of the EPROM image. Natilvadeyis a little-endian
version of this filter as well.

Your embedded code can check the EPROM using C code similar to the following:

unsigned long *begin = (unsigned long *)0;
unsigned long *end = (unsigned long *)0x100000;
unsigned long sum = 0;
while (begin < end)

sum += *begin++;

if (sum !=0)
{

Oops
}

The-checksum-bitnot-big-endianfilter is similar except that summingwer the checksum should yield a
value of all-one-bits{1). For example, using shorts rather than longs:

srec_cat infile \
—crop 0 OXFFFFFE \
—fill OxCC 0x00000 OxFFFFFE \
—checksum-neg-b-e OXFFFFFE 2 2\
-0 outfile

Assuming you chose the correct endian-ness, fiftarr embedded code can check the EPROM using C
code similar to the following:

unsigned short *begin = (unsigned short *)0;
unsigned short *end = (unsigned short *)0x100000;
unsigned short sum = 0;
while (begin < end)

sum += *begin++;
if (sum != OXFFFF)
{

}

There is also achecksum-positve-b-efilter, and a matching little-endian filtewhich inserts the simple
sum, and which would be checked in C using an equality test.

Oops

srec_cat infile \
—crop 0 OXFFFFFF\
—fill 0x00 0x00000 OxFFFFFF \
—checksum-neg-b-e OXFFFFFF 1 1\
-0 outfile

Assuming you chose the correct endian-ness, filtarr embedded code can check the EPROM using C
code similar to the following:

unsigned char *begin = (unsigned char *)0;
unsigned char *end = (unsigned char *)OxFFFFF;
unsigned char sum = 0;
while (begin < end)

sum += *begin++;
if (sum != *end)

{
}

In the 8-bit case, it doednhatter whether you use the big-endian or little-endian filter.

Oops

Reference Manual SRecord 46

srec_aamples(1) srec xamples(1)

Quick Hex-Dump
You can look at the checksum of your data, by using the “hex-dump” output format. This is useful for
looking at calculated values, or for debuggingseet_cafl) command before immortalizing it in a script.

srec_cat infile \
—crop 0 0x10000 \
—fill OxFF 0x0000 0x10000 \
—checksum-neg-b-e 0x10000 4\
—crop 0x10000 0x10004 \
-0 — —hex-dump

This command reads in the file, checksums the data and places the checksum at 0x10000, crops the result to
contain only the checksum, and then prints the checksum on the standard output in a classical hexadecimal
dump format. The special file name™means “the standard output” in this context.

Cyclic Redundancy Checks
The simple additie dhecksums hae a umber of theoretical limitations, to do with errorsytiean and
cant detect. ThaCRC methods hee fewer problems.

srec_cat infile \
—crop 0 OXFFFFFC \
—fill 0x00 0x00000 OXFFFFFC \
—crc32-b-e OXFFFFFC \
-0 outfile

In the abwe example, we hee aan EPROM in the lowest nggbyte of memory The —crop filter ensures we
are only summing the data within the EPROM, and not anywhere else-fillHdter fills any holes left in
the data. Finallythe—checksum-neg-b-dilter inserts a 32 bit (4 byte) checksum in big-endian format in
the last 4 bytes of the EPROM image. Naturdlgre is a little-endian version of this filter as well.

The checksum is calculated using the industry standard 32-bit CRC. Because SRecord is open source, you
can alays read the source code to sew ltovorks. Thereare mag non-GPL versions of this code
awailable on the Internet, and suitable for embedding in proprietary firmware.

There is also a 16-bit CR@ailable.

srec_cat infile \
—crop 0 OXFFFFFE \
—fill 0x00 0x00000 OXxFFFFFE \
—crcl6-b-e OXFFFFFE \
-0 outfile

The checksum is calculated using the CCITT formula. Because SRecord is open source, yeaysan al
read the source code to seavtibworks. Thereare mag non-GPL version of this codevalable on the
Internet, and suitable for embedding in proprietary firmware.

You can look at the CRC of your data, by using the “hex-dump” output format.

srec_cat infile \
—crop 0 0x10000 \
—fill OXFF 0x0000 0x10000 \
—crc16-b-e 0x10000 \
—crop 0x10000 0x10002 \

-0 — —hex-dump

This command reads in the file, calculates the CRC of the data and places the CRC at 0x10000, crops the
result to contain only the CRC, and then prints the checksum on the standard output in a classical
hexadecimal dump format.

Where Is My Data?
There are seral properties of your EPROM image that you may wish to insert into the data.

srec_cat infile —minimum-b-e OXFFFE 2 -0 outfile

Reference Manual SRecord 47

srec_aamples(1) srec xamples(1)

The abeoe example inserts the minimum address of the data yate)) into the data, as mbytes in big-
endian order at address OxFFFE. This includes the minimum itself. If the data already contains bytes at the
given address, you need to use an exclude filldre number of bytes defaults to 4.

There is also aminimume-I-e filter for inserting little-endian values, andawwore filters called
—exclusve-minimum-b-e and—exclusve-minimum-I-e that do not include the minimum itself in the
calculation of the minimum data address.

srec_cat infile —maximum-b-e OXFFFFFC 4 -0 outfile

The abeoe example inserts the maximum address of the datgn (water + 1 just like address ranges) into

the data, as four bytes in big-endian order at address OXFFFFFC. This includes the maximum itself. If the
data already contains bytes at theegiaddress, you need to use-eexcludefilter. The number of bytes

defaults to 4.

There is also amaximume-l-e filter for inserting little-endian values, andawwore filters called
—exclusve-maximum-b-e and—exclusve-maximum-I-e that do not include the maximum itself in the
calculation of the maximum data address.

srec_cat infile -length-b-e OXFFFFFC 4 -0 outfile

The abeoe example inserts the length of the datigh water+ 1 — low wate)) into the data, as four bytes in
big-endian order at address OXxFFFFFC. This includes the length itself. If the data already contains bytes at
the length location, you need to use-axcludefilter. The number of bytes defaults to 4.

There is also alength-l-efilter for inserting a little-endian length, and thexclusive-length-b-eand
—exclusive-length-I-efilters that do not include the length itself in the calculation.

What Format Is This?
You can obtain a variety of information about an EPROM load file by usingréee inf¢1) command.For
example:

$ srec_info example.srec
Format: Motorola S-Record
Header: "http://srecord.sourceforge.net/"
Execution Start Address: 00000000
Data: 0000 - 0122

0456 - OFFF
$

This example shows that the file is a Motorola S-Record. The text in the file header is printed, along with
the eecution start address. The final section shows the address ranges containing data (the upper bound of
each subrange iaclusive, rather than thexclusive form used on the command line.

$ srec_info some-weird-file.hex —guess
Format: Signetics
Data: 0000 - 0122
0456 - OFFF
$

The abeoe example guesses the EPROM load file format. Ittisrfallible but it usually gets it rightyou

can use-guessanywhere you would ge an explicit format, but it tends to be slower and for that reason is
not recommended. Also, for automated build systems, you want hard errors as early as possible; if a file
isn’t in the expected format, you want it to barf.

MANGLING THE D ATA
It is possible to change the values of the data bytevénadevays.

srec_cat infile —and OxFO —o oultfile

The abeoe example performs a bit-wise AND of the data bytes with the OxFO mask. The addresses of
records are unchangetican't actually think of a use for this filter.

srec_cat infile —or OXOF -0 outfile

Reference Manual SRecord 48

srec_aamples(1) srec xamples(1)

The abeoe example performs a bit-wise OR of the data bytes with the OxOF bits. The addresses of records
are unchangedl can't actually think of a use for this filter.

srec_cat infile —xor OxA5 -0 outfile

The abee example performs a bit-wise exclusiOR of the data bytes with the OxA5 bits. The addresses
of records are unchangedou oould use this to obfuscate the contents of your EPROM.

srec_cat infile —not-o0 outfile

The abeoe example performs a bit-wise NIQof the data bytes. The addresses of records are unchanged.
Security by obscurity?

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 49

srec_info(1) srec_info(1)

NAME
srec_info — information about EPROM load files

SYNOPSIS
srec_info[option..]filename..
srec_info —Help
srec_info -VERSion

DESCRIPTION
Thesrec_infoprogram is used to obtain input about EPROM ldlag.f It reads the files specified, and then
presents statistics about them. These statistics include: the file heagethEawecution start address if
ary, and the address rangesvered by the data if an

If there is binary data the headigmwill be presented using the URL encoding that uses % followed by two
hexadeimal character&or example a backspace would be encoded as “%08". (This is symmetric with the
srec_cat --header opion).

INPUT FILE SPECIFICATIONS
Input may be qualified in tvways: you may specify a data file or a data generdbomat and you may
specify filters to apply to them. An input file specification looke liis:
data-file[filter ...]
data-generatof filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looksdik
filenam¢ format][—ignore-checksums]
The default format is Motorola S-Record format, imanyothers are also understood.

Data Generators
It is also possible to generate data, rather than read it frden &6u may use a generator anywhere you
could use aile. Aninput generator specification looksdilthis:
—GENerate address-range-data-source
Generators include random data and various forms of constant data.

Common Manual Page
Seesrec_inpufl) for complete details of input speeifs. Thisdescription is in a separate manual page
because it is common to more than one SRecord command.

OPTIONS
The following options are understood:

@filename
The named text file is read for additional command ligeiraents. Aguments are separated by
white space (space, tab, newlir&). Thereis no wildcard mechanism. There is no quoting
mechanism. Commentshich start with # and extend to the end of the line, are ignored.
Blank lines are ignored.

—Help
Provide some help with using tkeec_infoprogram.

—IGnore_Checksums
The-IGnore-Checksumsoption may be used to disable checksum validation of input files, for
those formats which a dhecksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if thare missing) but their values are not chextk Usedafter an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address ord@nly one warning is issued per inpilef Thisis the default.

Reference Manual SRecord 50

srec_info(1) srec_info(1)

Note: the output okrec_catl) is alvays in this order.

Note: This option must be usdxforethe input fle. Thisis because if there areveeal files on
the command line, each may need different settings. The setting remains in force until the next
-Disable_Sequence_Warningsption.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be usdxforethe offending inputife. Thisis because if there are
several files on the command line, each may need different settings. The setting remains in force
until the next-Ensable_Sequence_Warninggption.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. Awarning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

-VERSion
Print the version of therec_infoprogram being»ecuted.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optiondu must use consecug ssquences of optional letters.

All options are case insensi# you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “-HEL” and “~h" are all interpreted to mearktfedp option. The
argument “~hlp” will not be understood, because conseegtitional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&®doinfoare long, this means
ignoring the extra leading “~". The-*-option=valu€’ corvention is also understood.

EXIT STATUS
The srec_infocommand will exit with a status of 1 onyagrror. The srec_infocommand will only exit
with a status of O if there are no errors.

COPYRIGHT
srec_infoversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_infoprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_info
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_info —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 51

srec_input(1) srec_input(1)

NAME
srec_input — input file specifications

SYNOPSIS
srec_*filename[format]

DESCRIPTION
This manual page describes the input file specifications faréwe cafl), srec_cmgl) andsrec_infgl)
commands.

Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looksdithis:
filenam¢ format][—ignore-checksums filter ...]

Thefilenamemay be specified as a file name, or the special name “=" which is understood to mean the
standard input.

Grouping with Parentheses
There are some cases where operator precedence of the filters can be ambiguous. Input specifications may
also be enclosed lyyparenthesekto male gouping eplicit. Remembethat the parentheses must be
separate words.e. surrounded by spaces, andythéll need to be quoted to get them past the shell’s
interpretation of parentheses.

Those Option Names Sug Are Long
All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optionau must use consecug ssquences of optional letters.

All options are case insensi# you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “-HEL” and “~h" are all interpreted to mearktfedp option. The
argument “~hlp” will not be understood, because conseegtitional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&gdoinputare long, this means
ignoring the extra leading “~". The-*-option=valu€’ corvention is also understood.

File Formats
The formatis specified by the argumeatterthe file name. The format defaults to Motorola S-Record if
not speciied. Theformat specifiers are:

—Absolute_Object_Module_Format
This option says to use the Intel Absolute Object Module Format (AOMF) to redtkthESke
srec_aonb) for a description of this file format.)

—Ascii_Hex
This option says to use the Ascii-sHrmat to read thealé. Seesrec_ascii_heb) for a
description of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to readl¢heSeesrec_atmel_genetib) for
a description of this file format.

—Binary
This option says the file is awebinary file, and should be read literallgThis option may also
be written —Rw.) Seesrec_binary5) for more information.

-B-Record
This option says to use the Freescale MC68EZ328 Dragonball bootstrap b-record format to read
the ile. Seesrec_brecor(b) for a description of this file format.

Reference Manual SRecord 52

srec_input(1) srec_input(1)

—COsmac
This option says to use the RCA Cosmac Elf format to readl¢gheSeesrec_cosmg®) for a
description of this file format.

—Dec_Binary
This option says to use the DEC Binary (XXDP) format to readilthe $eesrec_dec_binarip)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMONS52 format to readithe $eesrec_emon53) for a
description of this file format.

—FAlrchild
This option says to use the Fairchild Fairbug format to readl¢heSeesrec_faichild(5) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to readeheSkeesrec_fastloa(b) for
a description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to readeheSee
srec_formatted_bina(®) for a description of this file format.

—Four_Packed_Code
This option says to use the FPC format to readiline $eesrec_fp¢5) for a description of this
file format.

—Guess This option may be used to ask the command to guess the input format. This is slower than
specifying an explicit format, as it may open and scan and close the file a number of times.

—HEX_Dump
This option says to try to read a hexadecimal dump file, more or less in the style output by the
same option. This is not an exacterse mapping, because if there are ASCII edlents on the
right hand side, these may be confused for data bytes. Also, it toedaistand white space
representing holes in the data in the line.

-IDT This option says to the the IDT/sim binary format to readitbe $eesrec_id{5) for a
description of this file format.

—Intel This option says to use the Intekifermat to read thelé. Seesrec_inte(5) for a description of
this file format.

-INtel_HeX_16
This option says to use the Intekis INHX16) format to read thdlé. Seesrec_intel1§5) for
a description of this file format.

—Memory_Initialization_File
This option says to use the Memory Initialization File (MIF) format by Altera to read the file.
Seesrec_mif(5) for a description of this file format.

—Mips_Flash_Big_Endian

—Mips_Flash_Little Endian
These options say to use the MIPS Flash file format to readehé&Eeesrec_mips_flaskb) for a
description of this file format.

-MOS_Technologies
This option says to use the Mos Technologies format to readehé&eesrec_mos_tedb) for a
description of this file format.

—Motorola [width]
This option says to use the Motorola S-Record format to readehéMay be written—-S-
Record as well.) Searec_motoroléb) for a description of this file format.

Reference Manual SRecord 53

srec_input(1) srec_input(1)

The optionalwidth argument describes the number of bytes which form each address multiple.
For normal uses the default of one (1) byte is appropriate. Some systems with 16-bit or 32-bit
targets mutilate the addresses in the file; this option will correct for that. e.mtikt other
parameters, this one cannot be guessed.

—MsBin This option says to use the Windows CE Binary Image Data Format to redd.tt&ee
srec_msbi(b) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to reatbthSde
srec_needha(b) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See_0s65(p) for a description of this file
format.

—-PPB This option says to use the Stag Prom Programmer binary formasreseepls) for a
description of this file format.

—-PPX This option says to use the Stag Prom Programmer hexadecimal formateSqpx5) for a
description of this file format.

-SIGnetics

This option says to use the Signetics format. See_spasi®) for a description of this file
format.

—SPAsm
This is a synonym for theSPAsm_Big_Endianoption.

—-SPAsm_Big_Endian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Sewec_spasip) for a description of this file format.

—-SPAsm_Little_Endian

This option says to use the SPASM assembler output format, but with the data the other way
around.

-STewie
This option says to use the Stewie binary format to readi¢heSeesrec_stewi¢s) for a
description of this file format.

—Tektronix
This option says to use the Tektronixliermat to read thelé. Seesrec_tektronixs) for a
description of this file format.

—Tektronix_Extended
This option says to use the Tektronix extendedfbemat to read thelé. See
srec_tektronix_extendé€s) for a description of this file format.

—Texas_Instruments_Tagged
This option says to use thexas Instruments Tagged format to read ilee fSee
srec_ti_tayged(5) for a description of this file format.

—Texas_Instruments_Tagged_16
This option says to use thexas Instruments SDSMA320 format to read thélé. See
srec_ti_tayged_16(5) for a description of this file format.

—Texas_Instruments_TeXT
This option says to use thexas Instruments TXT (MSP430) format to read ilee fSee
srec_ti_tx¢5) for a description of this file format.

-TRS80
This option says to use the Radio Shack TRS-80 object file format to redd.ttecke
srec_trs8(@5) for a description of this file format.

Reference Manual SRecord 54

srec_input(1) srec_input(1)

-VMem
This option says to use the Verilog VMEM format to read ilee Seesrec_vmerfd) for a
description of this file format.

-WILson
This option says to use the wilson format to readitee Eeesrec_wilsoif5) for a description of
this file format.

Ignore Checksums
The-1Gnore-Checksumsoption may be used to disable checksum validation of input files, for those
formats which hee checksums at all. Note that the checksum values are still read in and parsed (so it is
still an error if thg are missing) but their values are not chextk Usedafter an input file name, the option
affects that file alone; used anywhere else on the command line, it applies to all following files.

Generators
It is also possible to generate data, rather than read it frden &6u may use a generator anywhere you
could use aile. Aninput generator specification looksdilthis:

—GENerate address-range-data-source
The—-data-sourcenay be one of the following:

—CONSTant byte-value
This generator manufactures data with thergbyte value of the the gén address range. It is
an error if the byte-value is not in the range 0..255.

For example, to fill memory addresses 100..199 with newlines (0x0A), you could use a command
like

srec_cat —generate 100 200 —constant 10 —o newlines.srec
This can, of course, be combined with data from files.

—REPeat_Databyte-value.
This generator manufactures data with therghbyte values repeatingver the the gren address
range. ltis an error if ap of the the byte-values are not in the range 0..255.

For example, to create a data region with OXDE in tiendoytes and OxAD in the odd bytes, use
a generator lile this:

srec_cat —generate 0x1000 0x2000 -repeat-data OXDE OxAD

The repeat boundaries are aligned with the base of the address range, modulo the number of
bytes.

—REPeat_Stringtext
This generator is almost identical to —repeat-data except that the data to be repeated is the text of
the given gring.

For example, to fill the holes in an EPROM imaggrom.sreavith the text “Copyright (C) 1812
Tchaikovsky”, combine a generator and an —exclude fikech as the command

If you need to inject binary data into the string (e.g. a terminating NUL character), use the URL
encoding that uses % followed bydwexadeimal characterd-or example a backspace would be
encoded as “%08”.

srec_cat eprom.srec \
—generate 0 0x100000 \
—repeat-string 'Copyright (C) 1812 Tchaikovsky. "\
—exclude —within eprom.srec \
-0 eprom.filled.srec

The thing to note is that weVvatwo data sources: theprom.sredile, and generated dataep an
address range whichas first mgabyte of memory but excluding areasreeed by the
eprom.sredata.

Reference Manual SRecord 55

srec_input(1) srec_input(1)

—CONSTant_Little_Endian value width
This generator manufactures data with theerginumeric value, of a gen byte width, in little-
endian byte orderlt is an eror if the given value does not fit into thegn byte width. It will
repeat wer and over within the address range range.

For example, to insert a subrsion commit number into 4 bytes at 0x0008..0x000B you would
use a command like

srec_cat —generate 8 12 —constant-lI-e $VERSION 4\
-0 version.srec

This generator is a caenience wrapper around thi&REPeat _Datageneratar It can, of course,
be combined with data from files.

—CONSTant_Big_Endianvalue width
As abwe, but using big-endian byte ordering.

Anything else will result in an error.

Input Filters
You may specify zero or morfdtersto be applied. Filters are applied in the order the user specifies.

—Adler_16_Big_Endianaddress
This filter may be used to insert an “Adler” 16-bit checksum of the data into theTaeddytes,
big-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes are
processed in ascending address ondetif the order the appear in the input).

Note: If you have toles in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will wothbizs. You

almost alvays want to use thefill filter before ap of the Adler checksunilfers. You will

receve a warning if the data presented for Adler checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_16_Little Endian address
This filter may be used to insert an Adler 16-bit checksum of the data into theldataytes, in
little-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes
are processed in ascending address oraein(the order thg appear in the input).

Note: If you have toles in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will votbizs. You

almost alvays want to use thefill filter before ap of the Adler flters. You will receve a

warning if the data presented for Adler checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_32_Big_Endianaddress
This filter may be used to insert a Adler 32-bit checksum of the data into theFdatebytes,
big-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes are
processed in ascending address ondetif the order the appear in the input).

Note: If you have toles in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will vothbizs. You

almost alvays want to use thefill filter before ap of the Adler checksunilfers. You will

receve a varning if the data presented for Adler checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as

Reference Manual SRecord 56

srec_input(1) srec_input(1)

the lower and upper bounds of your EBFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_32_Little_Endian address
This filter may be used to insert a Adler 32-bit checksum of the data into the~databytes, in
little-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes
are processed in ascending address oraein(the order thg appear in the input).

Note: If you have toles in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will wothbizs. You

almost alvays want to use thefill filter before ap of the Adler checksunilfers. You will

receve a warning if the data presented for Adler checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—AND value
This filter may be used to bit-wise ANDvalueto every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

—-Bit_Reverse[width]
This filter may be used toverse the order of the bits in each data byte. By specifying a width
(in bytes) it is possible to verse the order multi-byte values; this is implemented using the byte-
swap filter.

—Byte_Swap[width]
This filter may be used to swap pairs of odd arshédytes. Byspecifying a width (in bytes) it is
possible to reerse the order of 4 and 8 bytes, the default is 2 bytes. (Widths in excess of 8 are
assumed to be number of bits.) It is not possible to swap non-poweo-ofitinesses. @
change the alignment, use the offset filter before and after.

—Checksum_BitNot_Big_Endianaddresq nbyteq width]]
This filter may be used to insert the aemplement checksum of the data into the data, most
significant byte ifst. Thedata is literally summed; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as iftwere filled with zeros. If the data
already contains bytes at the checksum location, you need to use an exclyade il xvill
generate errorsYou need to apply and crop or fill filters before this filt&he value will be
written with the most significant byte@dt. Thenumber of bytes of resulting checksum defaults
to 4. The width (the width in bytes of the values being summed) defaults to 1.

—Checksum_BitNot_Little_Endian addresq nbyteq width]]
This filter may be used to insert the aemplement (bitnot) checksum of the data into the data,
least significant byteirst. Otherwisesimilar to the abee.

—Checksum_Negatie Big_ Endian addresq nbyteq width]]
This filter may be used to insert the tsabmplement (ngative) checksum of the data into the
data. Otherwissimilar to the abee.

—Checksum_Negatre Little Endian addresq nbyteq width]]
This filter may be used to insert the ts@bmplement (ngative) checksum of the data into the
data. Otherwissimilar to the abee.

—Checksum_Positve Big_Endianaddresq nbyteq width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the abwe.

Reference Manual SRecord 57

srec_input(1) srec_input(1)

—Checksum_Positve Little_Endian addresq nbyteq width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the abwe.

—-CRC16_Big_Endianaddresq modifier..]
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. o bytes, big-endian ordeare inserted at the addressayi. Holesin the input data are
ignored. Bytesre processed in ascending address oragir(the order the appear in the
input).
The following additional modifiers are understood:
number Set the polynomial to be used to theeginumber.

—-POLYnomial name
This option may be used to set the CRC polynomial to be used, by name. The known
names include:

ibm 0x8005
ansi 0x8005
ccitt 0x1021
t10-dif 0x8bb7
dnp 0x3d65
dect 0x0589

See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names and
values.

—Most_To_Least
The CRC calculation is performed with the most significant bit in each byte processed
first, and then proceedingaerds the least significant bit. This is the default.

—Least_To_Most
The CRC calculation is performed with the least significant bit in each byte processed
first, and then proceedingnterds the most significant bit.

-CCITT
The CCITT calculation is performed. The initial seed is OxFFH#s is the default.

-XMODEM
The alternate XMODEM calculation is performed. The initial seed is 0x0000.

—-BROKEN

A common-but-broken calculation is performed (see note 2\elBheinitial seed is
0x84CF.

-AUGment

The CRC is augmented by sixteen zero bits at the end of the calculation. This is the
default.

—-No-AUGment
The CRC is not augmented at the end of the calculation. This is less standard
conforming, but some implementations do this.

Note: If you have toles in your data, you will get a different CRC than if there were no holes.
This is important because the in-memory EPROM image will nat hales. You almost aliays
want to use thefill filter before ap of the CRC iiters. You will receve a warning if the data
presented for CRC has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

Note 2:there are a great maRC16 implementations out there, see http://www.joegeluso.com-

Reference Manual SRecord 58

srec_input(1) srec_input(1)

[/software/articles/ccitt.htm (mogone, reproduced at http://srecord.sourceforge.net-
/crcl6—ccitt.html) andA painless guide to CRC error detection algorithms”
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html for more information. If all else fails,

SRecord is open source software: read the SRecord source code. The CRC16 source code (found
in thesrecord/crc16.cc file of the distribution tarball) has a great marplanatory

comments.

Please try all twely combinations of the alve qotions before reporting a bug in the CRC16
calculation.

—-CRC16_Little_Endian addresq modifier...]
The same as theCRC16_Big_Endianfilter, except in little-endian byte order.

—CRC32_Big_Endianaddresq modifier..]
This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Bur bytes, big-endian ordexre inserted at the addressayi. Holesin the input data are
ignored. Bytesre processed in ascending address oraeir(the order the appear in the
input). Sealso the note about holes, &bo

The following additional modifiers are understood:

-CCITT
The CCITT calculation is performed. The initial seed is all one bits. This is the
default.

-XMODEM
An alternate XMODEM-style calculation is performed. The initial seed is all zero bits.

—CRC32_Little_Endian address
The same as theCRC32_Big_Endianfilter, except in little-endian byte order.

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical
complement of theCrop filter.

—Exclusive_Length_Big_Endianaddresq nbyteq width]]
The same as thd_ength_Big_Endianfilter, except that the result doest include the length
itself.

—Exclusive_Length_Little_Endian addresq nbyteq width]]
The same as thd_ength_Little_Endian filter, except that the result doest include the length
itself.

—Exclusive_MAXimum_Big_Endian addresq nbytes]
The same as theMAXimum_Big_Endian filter, except that the result doest include the
maximum itself.

—Exclusive_MAXimum_Little_ Endian addresq nbyteq|
The same as theMAXimum_Little_Endian filter, except that the result doest include the
maximum itself.

—Exclusive_MINimum_Big_Endian addresq nbyteq|
The same as theMINimum_Big_Endian filter, except that the result doest include the
minimum itself.

—Exclusive_MINimum_Little_Endian addresq nbytes]
The same as theMINimum_Little Endian filter, except that the result doest include the
minimum itself.

Reference Manual SRecord 59

srec_input(1) srec_input(1)

—eXclusive-OR value
This filter may be used to bit-wise XORvalueto every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

—Fill value address-range
This filter may be used to fill ggaps in the data with bytes equaltdue The fill will only
occur in the address rangedi.

—Fletcher_16_Big_Endianaddresqy sum1 sum answer]]
This filter may be used to insert an Fletcher 16-bit checksum of the data into thé&wlataytes,
big-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes are
processed in ascending address onderif the order the appear in the input).

Note: If you have toles in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will vothbizs. You

almost alvays want to use thefill filter before ap of the Fletcher checksunitérs. You will

receve a varning if the data presented for Fletcher checksum has holes.

You should also beware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use il filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

It is possible to select seed valuesfomlandsum?2in the algorithm, by adding seed values on

the command line. Tlyseach default to OxFF if not explicitly stated. The default values (0)
means that an empty EPROM (all 0x00 or all OxFF) will sum to zero; by changing the seeds, an
empty EPROM will alvays fail.

The third optional argument is the desired sum, when the checksum itself is suAnwdmon
value is 0x0000, placed in the lastawytes of an EPROM, so that the Fletcher 16 checksum of
the EPROM is exactly 0x0000. No manipulation of the final value is performed if this value if
not specified.

—Fletcher_16_Little_Endianaddress
This filter may be used to insert an Fletcher 16-bit checksum of the data into thé&wlataytes,
in little-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes
are processed in ascending address oraein(the order thg appear in the input).

Note: If you have toles in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will vothbizs. You

almost alvays want to use thefill filter before ap of the Fletcherifters. You will receve a

warning if the data presented for Fletcher checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use il filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Fletcher_32_Big_Endianaddress
This filter may be used to insert a Fletcher 32-bit checksum of the data into thEaathytes,
big-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes are
processed in ascending address ondetif the order the appear in the input).

Note: If you have toles in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will vothbizs. You

almost alvays want to use thefill filter before ap of the Fletcher checksunitérs. You will

receve a varning if the data presented for Fletcher checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

Reference Manual SRecord 60

srec_input(1)

srec_input(1)

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Fletcher_32_Little_Endianaddress

This filter may be used to insert a Fletcher 32-bit checksum of the data into thEaathytes,
in little-endian orderare inserted at the addressayi. Holesin the input data are ignored. Bytes
are processed in ascending address oraein(the order thg appear in the input).

Note: If you have toles in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will wothbizs. You

almost alvays want to use thefill filter before ap of the Fletcher checksunitérs. You will

receve a varning if the data presented for Fletcher checksum has holes.

You should also bewsare that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EBFNR. Thisis another reason to use thl filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—-Length_Big_Endianaddresq nbyteq width]]

This filter may be used to insert the length of the data (high water mimwgdter) into the data.

This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filteor this will generate errors. The value will be written with the most
significant byte ifst. Thenumber of bytes defaults to 4. The width defaults to 1, and is divided
into the actual length, thus you can insert the width in units of words (2) or longs (4).

—-Length_Little Endian addresq nbyteq width]]

The same as thd_ength_Big_Endianfilter, except the value will be written with the least
significant byte first.

-MAXimum_Big_Endian addresq nbyteg]

This filter may be used to insert the maximum address of the data (high water

+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude fitiethis will generate errors. The value will be
written with the most significant byte@dt. Thenumber of bytes defaults to 4.

-MAXimum_Little_Endian addresq nbyteq

The same as thaMAXimum_Big_Endian filter, except the value will be written with the least
significant byte first.

—Message_Digest_&ddress

This filter may be used to insert a 16 byte MD5 hash into the data, at the addsess gi

—MINimum_Big_Endian addresq nbytes]

This filter may be used to insert the minimum address of the datavéiter) into the data. This
includes the minimum itself. If the data already contains bytes atuére ajidress, you need to
use an exclude filteor this will generate errors. The value will be written with the most
significant byte ifst. Thenumber of bytes defaults to 4.

—MINimum_Little Endian addresq nbytes]|

The same as theMINimum_Big_Endian filter, except the value will be written with the least
significant byte first.

-NOT This filter may be used to bit-wise NQhe value of eery data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.
—OFfsetnbytes

This filter may be used to offset the addresses by ttea gumber of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necess#ou may use rggtive rumbers for the offset,
if you wish to mee data lower in memory.

Please note: thexecution start address is a different concept than the first address in memory of
your data. If you want to change where your monitor will steatating, use the-execution-
start-addressoption srec_cafl) only).

Reference Manual SRecord 61

srec_input(1) srec_input(1)

-OR value
This filter may be used to bit-wise OR/alueto every data byte. This is useful if you need to set
bits. Onlyexisting data is altered, no holes are filled.

—Random_Fill address-range
This filter may be used to fill grgaps in the data with random bytes. The fill will only occur in
the address rangevgn.

—-Ripe_Message_Digest_l6fddress
This filter may be used to insert an RMD160 hash into the data.

—Secure_Hash_Algorithm_Jladdress
This filter may be used to insert a 20 byte SHA1 hash into the data, at the address gi

—Secure_Hash_Algorithm_224ddress
This filter may be used to insert a 28 byte SHA224 hash into the data, at the aderesSege
Change Notice 1 for FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_256@ddress
This filter may be used to insert a 32 byte SHA256 hash into the data, at the aderesSege
FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_384ddress
This filter may be used to insert a 48 byte SHA384 hash into the data, at the aderesSege
FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_512ddress
This filter may be used to insert a 64 byte SHA512 hash into the data, at the aderesSege
FIPS 180-2 for the specification.

—=SPlit multiple[offset[width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leae o gaps. Thisuseful for wide data buses and memory striping. Mhéipleis the
bytes multiple to spliteer, the offsetis the byte offset into this range (defaults to 0),widthis
the number of bytes to extract (defaults to 1) within the multiple. In ordente feajaps, the
output addresses angifith/ multiple) times the input addresses.

-STM32 address
This is a synonym for theSTM32_Little_Endian filter.

-STM32_Little_ Endian address

-STM32_Big_Endianaddress
These filters manbe wse to generate the CRC used by the hardware CRC unit on the STM32
series of ARM MPUs. The algorithm used by the STM32 hardware unit is just a CRC32 with a
different polynomial and word-fed instead of byte-fed.

Theaddresds where to place the 4-byte STM32 CRC.

The CRC used is documented in “RM0041, STM32F100xx reference manual”, page 46, chapter
“CRC Calculation Unit”, which can be found at
http://www.st.com/internet/mcu/product/216844.jsp

—-TIGer address
This filter may be used to insert a 24 byte TIGER/192 hash into the data at the adgress gi

—-UnFill value[min-run-length]
This filter may be used to create gaps in the data with bytes equaiieo You can think of it as
reversing the effects of theFill filter. The gaps will only be created if the are at I@aist-run-
lengthbytes in a rav (defaults to 1).

—Un_SPlit multiple[offset] width]]
This filter may be used toverse the effects of the split filteiThe arguments are identical. Note
that the address range is expandedl{ijple/ width) times, leaving holes between the stripes.

Reference Manual SRecord 62

srec_input(1) srec_input(1)

—WHlIrlpool address
This filter may be used to insert a 64 byte WHIRLPOOL hash into the data, at the address gi

Address Ranges
There are eight ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C corentions) this is an explicit address range. The minimum is inautsie
maximum is exclusie (one more than the last address). If the maximunviengis zro then the
range extends to the end of the address space.

-Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified
input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything another input specification can be.

See also theover option for a discussion on operator precedence.

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, withoyt lasles, @en if the input has holes. The input
specification need not be just a file name, it may be anythingtaar input specification can be.

You may need to enclosaput-specificatiorin parentheses to malaire it cant misinterpret
which arguments go with which input spézdftion. Thisis particularly important when a filter is
to follow. For example

filename-fill 0 —over filename2-swap-bytes
groups as

filename-fill 0 —over ’(’ filename2-swap-bytes ’)’
when what you actually wanted was

‘(" filename—fill 0 —over filename?2)’ —swap-bytes
The command line expression parsing tends to be “greedy” (or right ass&)cattier than
conservatie (or left associatie).

address-range-RAnge-PADding number
It is also possible to pad ranges to be whole aligned multiples ofvérergimber For example
input-file —fill OxFF —within input-file -range-pad 512
will fill the input-file so that it consists of whole 512-byte blocks, aligned on 512 byte boundaries.
Any large holes in the data will also be multiples of 512 bytes, thoughrténe have keen shrunk
as blocks before and after are padded.

This operator has the same precedence as the explicit union operator.

address-range INTERsect address-range
You can intersect te address ranges to produce a smaller address range. The intersection
operator has higher precedence than the implicit union operashrgied left to right).

address-range-UNlon address-range
You can union tve address ranges to produce a larger address range. The union operator has
lower precedence than the intersection operat@iuated left to right).

address-range-DIFference address-range
You can difference tw address ranges to produce a smaller address range. The result is the left
hand range with all of the right hand range reedo Thedifference operator has the same
precedence as the implicit union operateel(gated left to right).

address-rang address-range
In addition, all of these methods may be used, and used more than once, and the results will be
combined (implicit union operatosame precedence as explicit union operator).

Reference Manual SRecord 63

srec_input(1) srec_input(1)

Calculated Values
Most of the places alwe where a number is expected, you may supply one of the following:

- value
The value of this expression is thegetéve d the expression gument. Notehespacebetween
the minus sign and its argument: this space is mandatory.
srec_cat in.srec —offset — —minimum-addr in.srec -0
out.srec
This example shows hoto move data to the base of memory.

(value)
You may use parentheses for grouping. When using parenthesesjubeeach be a separate
command line argument, $hean't be within the text of the preceding or following option, and
you will need to quote them to get them past the shell, su¢h aand’y’

—MINimum-Address input-specification
This inserts the minimum address of the specified irijgut Theinput specification need not be
just a file name, it may be anythingyasther input specification can be.

See also theover option for a discussion on operator precedence.

—-MAXimum-Address input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anythingatimer input specification can be.

See also theover option for a discussion on operator precedence.

—Length input-specification
This inserts the length of the address range in the specified input file, ignoyihgles. The
input specification need not be just a file name, it may be anythingtla@r input specification
can be.

See also theover option for a discussion on operator precedence.

For example, the-OVER input-specificatioroption can be thought of as short-hand formin file -max
file’)", except that it is much easier to type, and also mdreieft.

In addition, calculated values may optionally be rounded in one of three ways:

value-Round_Downnumber
Thevalueis rounded down to the the largest integer smaller than or equal to a whole multiple of
thenumber

value—Round_Nearestnumber
Thevalueis rounded to the the nearest whole multiple ofnilnaber

value—Round_Upnumber
Thevalueis rounded up to the the smallest integer larger than or equal to a whole multiple of the
number

When using parentheses, ytraust each be a separate command line argumentcané be within the
text of the preceding or following option, and you will need to quote them to get them past the shell, as
' and’y
COPYRIGHT
srec_inputversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_inputprogram comes with ABSOLUTEL.NO WARRANTY; for details use thestec_input
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_input -VERSion Licenssommand.

Reference Manual SRecord 64

srec_input(1) srec_input(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 65

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted tandop
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed svagk/our freedom to share

and change theavks. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program — t@m&k it remains free software for all its useYde,

the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to ary other work released this way by its authoveu can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to makaure that you hae the freedom to distribute copies of free software (and charge for them

if you wish), that you receé ource code or can get it if you want it, that you can change the software or
use pieces of it in mefree programs, and that you kmgou can do these things.

To protect your rights, we need to peat others from denying you these rights or asking you to surrender
the rights. Therefore, you @ eertain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you kexei You must mak aure that thg, too, recere a can get the
source code. And you must sihithem these terms so thknow their rights.

Developers that use the GNU GPL protect your rights with #gps: (1) assert copyright on the software,
and (2) offer you this License giving yowgiepermission to cop distribute and/or modify it.

For the deelopers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed toydasers access to install or run modified versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the saite. Thesystematic pattern of such abuse occurs in the area of products

for individuals to use, which is precisely where it is most unacceptable. Thereforejerge$igned this

version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States shouldwqiasdiots to

restrict deelopment and use of software on general-purpose computers, but in those that do, we wish to
avad the special danger that patents applied to a free program coutdtrafi&ctively proprietary To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

GNU GPL 66

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

The precise terms and conditions for copying, distribution and modificatiomfollo
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-kklaws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to grcopyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals organizations.

To “modify” a work means to cgpfrom or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exacycde resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, woulklyoaldirectly or
secondarily liable for infringement under applicable copyright &écept executing it on a computer or
modifying a prvate cofy. Propagation includes copying, distribution (with or without modification),

making &ailable to the public, and in some countries other activities as well.

To “corvey’ a work means ankind of propagation that enables other parties toenoakeceve wmpies.
Mere interaction with a user through a computer network, with no transfer ofasom corveying.

An interactive wser interface displays “Appropriate g2 Notices” to the extent that it includes a cement

and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
corvey the work under this License, andvhto view a py of this License. If the interface presents a list

of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means gnnon-source form of a work.

A “ Standard Interface” means an interface that either isfianiabtandard defined by a recognized
standards bodwr, in the case of interfaces specified for a particular programming language, one that is
widely used among delopers working in that language.

The “System Libraries” of anxecutable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementationvislable to the public in source code forA.“ Major
Component”, in this context, means a major essential component (kernelwsyslem, and so on) of the
specific operating system (if any) on which tixecaitable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for anxecutable work) run the object code and to modify the work, including scripts to

control those actities. Hawvever, it does not include the work'System Libraries, or general-purpose tools

or generally aailable free programs which are used unmodified in performing those activities but which are
not part of the wrk. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 67

GPL(GNU) FreeSoftware Bundation GPL(GNU)

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License expliditimafyour unlimited
permission to run the unmodified Program. The output from runningesszbwork is ceered by this
License only if the output, gén its content, constitutes avawed work. ThisLicense acknowledges your
rights of fair use or other eaqualent, as provided by copyrightia

You may make, run and propagatevee@d works that you do not cegy, without conditions so long as

your license otherwise remains in forcéou may corvey @vered works to others for the sole purpose of
having them ma& modifications exclusiely for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License irvegng all material for which you do not
control copyright. Thosehus making or running the wered works for you must do so excldy on your
behalf, under your direction and control, on terms that prohibit them from makjrapies of your
copyrighted material outside their relationship with you.

Corveying under ap other circumstances is permitted solely under the conditions stated belo
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Igd Rights From Anti-Circumvention ha

No covered work shall be deemed part of an effectechnological measure underyaapplicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you cowvey a overed work, you waie any egd power to forbid circumvention of technological
measures to the extent such circumvention is effecteddogiging rights under this License with respect to
the cavered work, and you disclaim gintention to limit operation or modification of the work as a means
of enforcing, against the workisers, your or third parties’del rights to forbid circumvention of
technological measures.

4. Corveying Verbatim Copies.

You may corvey vabatim copies of the Progras®urce code as you reeeiit, in ary medium, provided
that you conspicuously and appropriately publish on eachawgppropriate copyright notice; keep intact
all notices stating that this License ang aon-permissie terms added in accord with section 7 apply to
the code; keep intact all notices of the absenceyofvarnranty; and gie dl recipients a coyp of this

License along with the Program.

You may charge anprice or no price for each cgphat you comey, and you may offer support or warranty
protection for a fee.

5. Corveying Modified Source Versions.

You may corvey a wrk based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and givinyantedate.

b) The work must carry prominent notices stating that it is released under this Licensg eonti@ions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore applglong with ary applicable section 7 additional terms, to
the whole of the work, and all its partsgaalless of hw they are packaged. This Licensevgs no
permission to license the work inyaother way but it does not imalidate such permission if you &
separately receed it.

d) If the work has interacte wser interfaces, each must display Appropriatga R otices; howeer, if
the Program has interaai interfaces that do not display AppropriatgdeNotices, your work need
not male them do so.

GNU GPL 68

GPL(GNU)

GNU

FreeSoftware Bundation GPL(GNU)

A compilation of a ceered work with other separate and independent works, which are not by their nature
extensions of the a@red work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “gdgi'df the compilation and its

resulting copyright are not used to limit the accessga teghts of the compilatios’ users beyond what

the individual works permit. Inclusion of aveed work in an agggete does not cause this License to

apply to the other parts of the agggke.

6. Corveying Non-Source Forms.

You may corvey a overed work in object code form under the terms of sections 4 and 5, provided that you
also comey the machine-readable Corresponding Source under the terms of this License, in one of these

ways:

a)

b)

d)

e)

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offealid for at least three years and valid for as long as you

offer spare parts or customer support for that product modelg@gione who possesses the object
code either (1) a cgpof the Corresponding Source for all the software in the product thatesedo

by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing thigog of source, or (2) access to

copy the Corresponding Source from a network server at no charge.

Corvey individual copies of the object code with a ga the written offer to provide the
Corresponding Source. This alternatis dlowed only occasionally and noncommercigdgd only
if you receved the object code with such an offer accord with subsection 6b.

Corvey the object code by offering access from a designated place (gratis or for a charge), and offer
equialent access to the Corresponding Source in the same way through the same place at no further
chage. You need not require recipients to gape Corresponding Source along with the object code.

If the place to copthe object code is a network sentbe Corresponding Source may be on a

different server (operated by you or a third party) that supportsasnti copying facilities, provided

you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
awailable for as long as needed to satisfy these requirements.

Corvey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Libraryneed not be included in cesying the object code work.

A “User Product” is either (1) a “consumer product”, which meansaagible personal property which is
normally used for personal, familyr household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved iraf/ar of coverage. fer a particular product reced by a marticular user‘normally

used” refers to a typical or common use of that class of prodgetdiess of the status of the particular

user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer producgeedless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product meany amethods, procedures, authorizatiay or other
information required to install anckecute modified versions of a wered work in that User Product from a
modified version of its Corresponding Source. The information mutsud ensure that the continued
functioning of the modified object code is in no case@ried or interfered with solely because
modification has been made.

If you corvey an object code work under this section in, or with, or specifically for use in, a User Product,

GPL 69

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

and the coweying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed tegardtess of hav the transaction is
characterized), the Corresponding Sourceveged under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you dhad party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warrantgr updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source omeyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementatiaifable to the public in source code
form), and must require no special passwordeyrfar unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though thevere included in this License, to the extent thay e valid under applicableva

If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remainsged by this License withoutgerd to the additional
permissions.

When you cowvey a opy of a mvered work, you may at your option remeany aditional permissions

from that cop, or from ary part of it. (Additional permissions may be written to require their own vamo
in certain cases when you modify thenk) You may place additional permissions on material, added by
you to a cegered work, for which you hae a can gve gpropriate copyright permission.

Notwithstanding ay other provision of this License, for material you add to\ae work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonalgd leotices or author attributions in that material or in
the Appropriate Lgd Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademank far use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone wieysdre
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissie alditional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you rerediit, or ary part of it, contains a notice stating that it izgmed

by this License along with a term that is a further restriction, you mayeetmat term. If a license
document contains a further restriction but permits relicensing eeyag under this License, you may
add to a ceered work material geerned by the terms of that license document, provided that the further
restriction does not sume such relicensing or caeying.

If you add terms to a wered work in accord with this section, you must place, in theamieource files,
a datement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GPL 70

GPL(GNU) FreeSoftware Bundation GPL(GNU)

Additional terms, permisge a non-permissie, may be stated in the form of a separately written license,
or stated as exceptions; the edeequirements apply either way.

8. Termination.

You may not propagate or modify avaed work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including anpatent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionallynless and until the copyright holder explicitly and finally terminates your
license, and (b) permanentif/the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first timewsorbeied notice of

violation of this License (for grwork) from that copyright holdeand you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties/ereréized
copies or rights from you under this License. If your righteeH®en terminated and not permanently
reinstated, you do not qualify to reeeirew licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to vecgirun a cop of the Program. Ancillary
propagation of a a@red work occurring solely as a consequence of using peer-to-peer transmission to
receve a opy likewise does not require acceptance. Hamenothing other than this License grants you
permission to propagate or modifyyacovered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating e work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you corey a overed work, the recipient automatically recss a icense from the original
licensors, to run, modify and propagate that work, subject to this Lic&oseare not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of gagzation, or substantially all assets of
one, or subdividing an ganization, or merging genizations. Ifpropagation of a a@red work results

from an entity transaction, each party to that transaction who/es@opy of the work also recees

whatever licenses to the work the padyredecessor in interest had or couldeginder the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose gnfurther restrictions on theercise of the rights granted offismed under this

License. IBr example, you may not impose a license fee, rqyaltgther charge forxercise of rights

granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that anpatent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 71

GPL(GNU) FreeSoftware Bundation GPL(GNU)

the Program or gnportion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contaljatmtributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some, pemmiged by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contribetsion. Br purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exchasivorldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” yseapress agreement or commitment, hegre
denominated, not to enforce a patent (such as an express permission to practice a pataandmncd to
sue for patent infringement)lo “grant” such a patent license to a party means teraath an agreement
or commitment not to enforce a patent against the party.

If you cornvey a overed work, knowingly relying on a patent license, and the Corresponding Source of the
work is not aailable for anyone to cop free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be s@itable, or (2) arrange to depé yourself of the benefit of the patent

license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” meanswoehal

knowledge that, but for the patent license, youveging the coered work in a countryor your recipient’s

use of the ceered work in a countrywould infringe one or more identifiable patents in that country that

you hae reason to beliee ae valid.

If, pursuant to or in connection with a single transaction or arrangement, yay,corpropagate by
procuring comeyance of, a ceered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify oveya gecific copy of the caovered work,

then the patent license you grant is automatically extended to all recipients ofeitesl aeork and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of itrage, prohibits the
execise of, or is conditioned on the noxercise of one or more of the rights that are specifically granted
under this LicenseYou may not corey a overed work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which yoa pagtknent to the third party

based on the extent of your activity of eeying the work, and under which the third party grants, yocin
the parties who would rees the cavered work from you, a discriminatory patent license (a) in connection
with copies of the ogered work comeyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain t#lesedowork, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limitiggraplied license or other defenses to

GNU GPL 72

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

infringement that may otherwise beagable to you under applicable patentla
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court grageement or otherwise) that contradict the
conditions of this License, thi@lo not excuse you from the conditions of this License. If you cannot

convey a overed work so as to satisfy simultaneously your obligations under this Licenseyanttiem

pertinent obligations, then as a consequence you may nagyciat dl. For example, if you agree to

terms that obligate you to collect a royalty for furthervaymg from those to whom you ceey the

Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding ay other provision of this License, youvepermission to link or combine grcovered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to cuay the resulting wrk. Theterms of this License will continue to apply to the
part which is the ogered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised andvorasions of the GNU General Public
License from time to time. Suchweversions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version numbetf the Program specifies that a certain numbered
version of the GNU General Public License “oyaater version” applies to it, you &ate option of
following the terms and conditions either of that numbered version oy d&tan version published by the
Free Software dundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may chooseyaversion &er published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that prosypublic statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions mayvgiyou additional or different permissions. Howee no additional obligations
are imposed on greuthor or copyright holder as a result of your choosing tovioHidater version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,a THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE SATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES RBVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NDLIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS O THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM PRVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSAR SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED 1O IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE D YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NO LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED IMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM O OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GPL 73

GPL(GNU) FreeSoftware Bundation GPL(GNU)

SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided ab@annot be gien local legd effect
according to their terms, reviewing courts shall apply localthteat most closely approximates an absolute
waiver of al civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a cgmf the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your MePrograms

If you develop a nev program, and you want it to be of the greatest possible use to the public, the best way
to achiee tis is to mak it free software whichveryone can redistribute and change under these terms.

To do 9, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectiely state the exclusion of warranty; and each file showe ladeast the “copyright”
line and a pointer to where the full notice is found.

one line to give the pgram’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) anlater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on e to contact you by electronic and paper mail.

If the program does terminal interaction, radkoutput a short notice likthis when it starts in an
interactve node:

<program> Copright (C) <year> <name of author>
This program comes with ABSOLUTEINO WARRANTY; for details type “sh@ w”. Thisis free
software, and you are welcome to redistribute it under certain conditions; typec’shar details.

The hypothetical commands “skiav” and “shav ¢” should shav the appropriate parts of the General
Public License. Of course, your programdmmands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school;, ifoesign a “copyright
disclaimer” for the program, if necessaior more information on this, andvwdo gpply and follav the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine libraggou may consider it more useful to permit linking proprietary
applications with the librarylf this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.htmlI>.

GNU GPL 74

srecord(3) srecord(3)

NAME
srecord - library to manipulate EPROM load files
SYNOPSIS
#include <srecorgdameh>
cc ... —Isrecord
DESCRIPTION
The srecord sjared library may be used to add all of the EPROM file formats and filters to your own
projects.

The full documentation for the shared library is generated by Doxygen from the source files, and is
available on the Internet at
http://srecord.sourceforge.net/srecord/index.html

COPYRIGHT
srecordversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srecordprogram comes with ABSOLUTELNO WARRANTY; for details use thestecord
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use therécod —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 75

LGPL(3) FreeSoftware Bundation LGPL(3)

NAME

LGPG — GNU Lesser General Public License

DESCRIPTION

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to cg@nd distribute verbatim copies of this license document, but changing it is
not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3
of the GNU General Public License, supplemented by the additional permissions listed belo

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU
GPL" refers to version 3 of the GNU General Public License.

"The Library" refers to a a@red work geerned by this License, other than an Application or a Combined
Work as defined bela.

An "Application” is aty work that makes use of an interface provided by the Lipbatywhich is not
otherwise based on the Librarefining a subclass of a class defined by the Library is deemed a mode of
using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Libiidrg
particular version of the Library with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the
Combined Work, excluding grsource code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or source code for
the Application, including andata and utility programs needed for reproducing the Combined Work from
the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may corvey a overed work under sections 3 and 4 of this License without being bound by section 3 of
the GNU GPL.

2. Corveying Modified Versions.

If you modify a cop of the Library and, in your modifications, a facility refers to a function or data to be
supplied by an Application that uses the facility (other than as an argument passed when the facility is
invoked), then you may caey a opy of the modified version:

a) under this License, provided that you makmpod faith effort to ensure that, in theeat an
Application does not supply the function or data, the facility still operates, and performsavhate
part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that
copy.

3. Object Code Incorporating Material from Library Header Files.

GNU

The object code form of an Application may incorporate material from a header file that is part of the

Library. You may coxey sich object code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline
functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each cgpf the object code that the Library is used in it and that the
Library and its use are eered by this License.

LGPL 76

LGPL(3) FreeSoftware Bundation LGPL(3)

b) Accompay the object code with a cgwf the GNU GPL and this license document.

4. Combined Works.

You may corvey a @mbined Work under terms of your choice that, taken togedfiectively do not
restrict modification of the portions of the Library contained in the Combined Work werdee
engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each cgpf the Combined Work that the Library is used in it and
that the Library and its use areveted by this License.

b) Accompay the Combined Work with a cgf the GNU GPL and this license document.

C) For a Combined Work that displays copyright notices durirecation, include the copyright

notice for the Library among these notices, as well as a reference directing the user to the copies
of the GNU GPL and this license document.

d)
Do one of the following:

0) Corvey the Minimal Corresponding Source under the terms of this License, and the
Corresponding Application Code in a form suitable &nd under terms that permit,
the user to recombine or relink the Application with a modified version of the Linked
Version to produce a modified Combined Work, in the manner specified by section 6 of
the GNU GPL for coveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Libiarguitable
mechanism is one that (a) uses at run time s obthe Library already present on the
users computer system, and (b) will operate properly with a modified version of the
Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is
necessary to install andesute a modified version of the Combined Work produced by
recombining or relinking the Application with a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must accompiaa Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL faregorg Corresponding
Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together
with other library facilities that are not Applications and are neéreal by this License, and ogey sich a
combined library under terms of your choice, if you do both of the following:

a) Accompay the combined library with a cgf the same work based on the Library,
uncombined with another library facilities, comeyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

GNU

The Free Software Foundation may publish revised andvorasions of the GNU Lesser General Public
License from time to time. Suchweersions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version numhdf the Library as you reced it specifies that a
certain numbered version of the GNU Lesser General Public Licensey'latanversion" applies to it,
you have the option of following the terms and conditions either of that published version oy laiten
version published by the Free Software Foundation. If the Library as yowegdsioes not specify a
version number of the GNU Lesser General Public License, you may chgogersion of the GNU
Lesser General Public Licensesepublished by the Free Software Foundation.

If the Library as you recegd it specifies that a proxy can decide whether future versions of the GNU

LGPL 77

LGPL(3) FreeSoftware Bundation LGPL(3)

Lesser General Public License shall apfiiat proxys public statement of acceptance of/aersion is
permanent authorization for you to choose that version for the Library.

GNU LGPL 78

srec_aomf(5) srec_aomf(5)

NAME
srec_aomf - Intel Absolute Object Module Format

DESCRIPTION
The Absolute Object Module Format (AOMF) is a subset of the 8051. OME structure of an absolute
object file (the order of the records in it) is similar to that of a relocatable oibgecThereare three main
differences: théirst is that an absolute object file contains one module thr@ysecond is that not all the
records can appear in the absolute file and the third is that the records can contain only absolute
information.

Generic Record Format
Each record starts with a record type which indicates the type of the record, and record length which
contain the number of bytes in the record exwkisi the first two fields. The record ends with a checksum
byte which contains the 2s complement of the sum (modulo 256) of all other bytes in the record. Therefore
the sum (modulo 256) of all bytes in the record is zero.

The record length includes the payload and checksum fields, but excludes the type and length fields.
All 16-bit fields are little-endian.

REC Record | Paload CHK
TYP Length SUM
8 hits 16 bits 8 hits

Here are some of the reglmt record types:

0x01 Scopdefinition Record
0x02 ModuleStart Record

0x04 ModuleEnd Record

0x06 ContenRecord

OXOE Sgment Definition Record
0x12 Delng Items Record

0x16 PublicDefinition Record
0x18 ExternaDefinition Record

Names are not stored a C strings. Names are stored as a length byte followed by the contents.

Structure
An AOMF file consists of a module header record (0x02), followed by one or more content (0x06), scope
(Ox01) or debug (0x12) records, and ends in a module end record (0x04).

The records with the following types are extraneous/(they appear in the file but are ignored): OxOE,
0x16 and 0x18 (definition records). All records which are not part of the AOMF and are not extraneous are
considered erroneous.

Module Header Record

REC Record | Module | TRN ID Zero CHK
TYP Length | Name 8 hits 8 hits SUM
0x02 16 bits 8 hits

Each module must starts with a module header record. It is used to identify the module for the RL51 and
other future processors of 8051 objéletst Inaddition to the Module Name the record contains:

TRN ID The byte identifies the program which has generated this module:

OxFD ASMS51
OXFE PL/M-51
OxFF RL51.

Module End Record

Reference Manual SRecord 79

srec_aomf(5) srec_aomf(5)

REC Record | Module | zero REG zZero CHK
TYP Length | Name 16 bits MSK 8 hits SUM
0x04 16 bits 8 hits 8 hits

The record ends the module sequence and contains the following information: characteristics

MODULE NAME
The name of the module isvgh here for a consistegaheck. Itmust match the namewgh in
the Module Header Record.

REGISTER MASK (REG MSK)
The field contains a bit for each of the four register banks. Each bit, when set specifies that the
corresponding bank is used by the module:

Bit O (the least significant bit)
bank #0.

Bit 1 bank #1.

Bit 2 bank #2.

Bit 3 bank #3.
Content Record

REC Record | SEGID | Offset DATA CHK
TYP Length | 8 hits 16 bits SUM
0x06 16 bits 8 hits

This record provides one or more bytes of contiguous data, from which a portion of a memory image may
be constructed.

SEG ID This field must be zero.

OFFSET
Gives the absolute address of the first byte of data in the record, within the CODE address space.

DATA A sequence of data bytes to be loaded from OFFSET to OFFSET+RECORDLENGTH

Size Multiplier
In general, ra binary data will expand in sized by approximately 1.02 times when represented with this
format.

SOURCE
http://www.intel.com/design/mcs96/swsup/omf96_pi.pdf
ftp://download.intel.com/design/mcs51/SWSUP/omf&é.&ip archve)
http://www.elsist.net/WebSite/ftp/various/OMF51EPS. pdf

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&ommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 80

srec_ascii_hg5) srec_ascii_hgb)

NAME
srec_ascii_he- Ascii-Hex file format

DESCRIPTION
This format is also known as tiecii-Space-Herr Ascii-Hex-Spacérmat. Ifyou knav who invented
this format, please let me ko If you have a letter or more complete descriptiorg like to know that,
too.

The file starts with a start-of-text (STX or Control-B) character (0x02). Everything before the STX is
ignored.

Each data byte is represented as 2 hexadecimal characters, followed kscatidie character”. The
default execution character is a space, although yrfamograms which write this format omit the space
character immediately preceding end-of-line.

The address for data bytes is set by using a sequefié@ofn, characters, whenennnis the

4-character ascii representation of the address. The comma is required. There is no need for an address
record unless there arags. Implicitly the file starts a address 0 if no address is set before the first data
byte.

The file ends with an end-of-text (ETX or Control-C) character (0x03). Everything following the ETX is
ignored.

It is also possible to specify a running 16-bit checksum using a sequeb®erofn, characters, although
this usually appeaisfter the ETX character and is thus often ignored.

Variant Forms
In addition to a space charagctine execution character can also be percent (%) called "ascii-hex-percent"
format, apostrophe (') or comma (,) called "ascii-hex-comma" format. The file must use the same
execution character throughout.

If the execution character is a comma, the address and checksum commands are terminated by a dot (.)
rather than a comma (,).

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example asciishéle. It contains the data “Hello, World[rq] to be loaded at address 0x1000.
"B $A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A"C

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 81

srec_atmel_generic(5) srec_atmel_generic(5)

NAME
srec_atmel_generic — Atmel Generic file format

DESCRIPTION
This format is the output of the Atmel AVR assemblEhe file contains tw columns of hexadecimal
coded alues. Thdirst column is the 24-bit word address, the second column is the 16-bit word data. The

columns are separated by a colon (":") character.

By default, SRecord treats this is little-endian data (the least significanirsye if you want big endian
order use the —atmel-generic-be argument instead.

Size Multiplier
In general, binary data will expand in sized by approximately 6.0 times when represented with this format

(6.5 times in Windows).

EXAMPLE
Here is an example Atmel Generilef It contains the data “Hello, World[rqg] to be loaded at bytes address
0x0100 (but remembgthe file contents are word addressed).
000080:4865
000081:6C6C
000082:6F2C
000083:2057
000084:6F72
000085:6C64

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 82

srec_binary(5) srec_binary(5)

NAME
srec_binary - binary file format

DESCRIPTION
It is possible to read and write binary files usingc_cafl).

File Holes
Afile hole is a portion of a regular file that contains NUL characters and is not storgcdatablock on
disk. Holesare a long-standing feature of Unibe§. For instance, the following Unix command creates a
file in which the first bytes are a hole:

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6
$

Now /tmp/hole has 6,145 characters (6,144 NUL characters plus an X character), yet the file occupies
just one data block on disk.

File holes were introduced te@d wasting disk space. There used extenggly by database applications
and, more generallpy dl applications that perform hashing on files.

See http://www.oreilly.com/catalog/linuxkernel2/chapter/ch17.pdf for more information.

Reading
The size of binary files is taken from the size of the file on the file system. If the file has holes these will
read as blocks of NUL (zero) data, as there is mypaelavay to detect Unix file holes. In general, you
probably want to use theunfill filter to find and remee large swathes of zero bytes.

Writing
In producing a binary filesrec_cafl) honours the address information and places the data into the binary
file at the addresses specified in the file. Thisusually results on holes in thi&ef Sometimes
alarmingly large file sizes are reported as a result.

If you are on a brain-dead operating system without file holes then there are going to be real data blocks
containing real zero bytes, and consuming real amounts of disk space. Upgrade - | suggest Linux.

To make a fle of the size you expect, use
srec_info f0o.s19
to find the lowest address, then use
srec_cat foo.s19 —intel —offseh—o foo.bin —binary

wheren is the lowest address present infin@s19 file, as reported bgrec_infd1l). Thenegative offset
serves to mee the data down to lva an origin of zero.

SEE ALSO
srec_inpufl)
for a description of theunfill filter
srec_exampl€s)
has a section about binary files, and ways of automagically offseting the data back to zero in a
single command.

COPYRIGHT
SRrecordversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The SRrecordprogram comes with ABSOLUTEL.NO WARRANTY; for details use theSRrecord
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use th8Rrecod —VERSIion Licenseommand.

Reference Manual SRecord 83

srec_binary(5) srec_binary(5)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 84

srec_brecord(5) srec_brecord(5)

NAME
srec_brecord - Freescale MC68EZ328 Dragonball bootstrap record format

DESCRIPTION
This data format is understood by Freescale MC68EZ328 Dragonball series processors on their internal
UART.

Lines
Each line contains hexadecimal data, each byte represented bgxdecimal nybbles in upper case.
Characters not in this set, but larger than 0x30 (e.g. lower case) will be ignored, less than 0x30 (e.g. CR or
LF) are considered record terminators. Comments are problematittrgahis at home.

Fields
Each line contains a 4-byte address (big endian), a 1-byte length-and-mode, and then data bytes as dictated
by the length. There iso checksum. Azero length record is arxeeution start address record, non-zero
length records are data.

1[2]3]4]5] 6] 7] 8 9] 10 ..|n
Address Length| Data

The length-and-mode byte is formatted as follows:

7]6] 5] 4] 3] 2] 1] ¢

Mode | R Length

Mode These bits are ignored by SRecord in input (00 = bytes, 01 = half words, 10 is reserved, 11 = long
words). Thesdits are alvays zero on output by SRecord.

R This bit indicates a data read rather than a data write; SRecord does not accept input files with
this bit set, and will not set it on output.

Length The length of the records data bytes. It does not include the address or length bytes. The
maximum payload of a record is 31 bytes of data.

Size Multiplier
In general, binary data will expand in sized by at least 2.35 times when represented with this format.

EXAMPLE
Here is an example b-record formie f It contains the data “Hello, World” to be loaded at address 0.
000000000D48656C6C6F2C20576F726C640A

SEE ALSO
http://www.freescale.com/files/32bit/doc/ref_manual/MC68VZ328UM.pdf

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

Thesrec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 85

srec_coe.5(5) srec_coe.5(5)

NAME
srec_coe — Xilinx Codifcient File Format

DESCRIPTION
The Xilinx Coeficient File Format has a general syntax of the form:
keyword = value ; optional comment
radix-keyword = value ; optional comment
data-leyword = value ..., value

There are numerougjwords, only the “memory_initialization_radix” and “memory_initialization_vector
keywords are used. The semicolons are mandatory.

Size Multiplier
Binary data stored in this format expand approximately 4 times (5 time on Windows).

See Also
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htm

COPYRIGHT
srec_coe.%ersion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_coe.Hprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_coe.5
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_coe.5 -VERSion Licensmmmand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 86

srec_cosmac(5) srec_cosmac(b)

NAME
srec_cosmac — RCA Cosmac Elf file format

DESCRIPTION
This file takes the form of one or more RCA Cosmac EIf monitor commands, also known as the IDIOT/4
monitor. Only the change memory commanij is dlowed.

The general form of théM command takes the form

IMaaaa dd...dd
The!M command writes data byte bytes (represented by charactedgsingo successe memory
locations, started at addrez®aa Spaces between data bytes are ignored.

Using the comma, () line continuation character resumes from the next address in sequence.
IMaaaa dd...dd, dd ... dd

Using the semicolon () line continuation character takes an address on the next line
IMaaaa dd... dd; aaaa dd... dd

It is also possible to ka the semicolon immediately after the command.
IM; aaaa dd..dd

All of these forms may be used in combination.

Size Multiplier
In general, binary data will expand in size by approximately 2.0 times when represented with this format.

EXAMPLE
Here is an example Cosmalef It contains the data “Hello, World[rq] to be loaded at address 0x1000.
IM1000 48656C6C6F2C20576F726C640A

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 87

srec_dec_binary(5) srec_dec_binary(5)

NAME
srec_dec_binary — DEC Binary (XXDP) file format

DESCRIPTION
The DEC Binary (XXDP) format was used on the PDP 11 series machines. This is a binary format, and is
not readable or editable with a text editdhe file consists of records of the form

|type | length| addres ..datal.. checkgum
The field are defined as follows:

type Two byte little-endian &lue. Mustalways be 1.

length Two byte little-endian &lue. Thiss the number of bytes in the data, plus six.
address Two byte little-endian alue. Thiss the load address of the data.

data The data is simplewébytes. Therare (length-6) of them.

checksum
The checcksum is a single byte. It is thgatiee d the simple summ of all the header and data
bytes.

If the record length is exactly 6€. no data), this is thexecution start address record, indicating the
transfer address.

In addition there may be NUL padding characters between records. It is common for records to be padded
so that thg start on @en byte boundaries. In the days of paper tape, it was common for the filedo ha
mary leading NULs, to generate blank leader on the tape.

Size Multiplier
In general, ra binary data will expand in sized by approximately 1.03 times when represented with this
format.

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

Thesrec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 88

srec_emon52(5) srec_emon52(5)

NAME
srec_emon52 — Elektor Monitor (EMONS2) file format

DESCRIPTION
This format is used by the monitor EMON52yedeped by the European electronics magazine Elektor
(Elektuur in Holland). Elektor wouldhbe Hektor if they didn’t try to reirvent the wheel. I8 a nystery
why they didn’t use an existing format for the project. Only the Elektor Assembler will produce this file
format, reducing the choice of\ddopment tools dramatically.

Records
All data lines are called records, and each record contains the following four fields:

cc \ aaaa\ :\ dd. dd \ ssss‘f
The field are defined as follows:

cc The byte countA two dgit hex value (1 byte), counting the actual data bytes in the record. The
byte count is separated from the next field by a space.

aaaa The addreselfd. A four he digit (2 byte) number representing the first address to be used by
this record.

The address field and the data field are separated by a colon.

dd The actual data of this record. There can be 1 to 255 data bytes per record (see cc) All bytes in
the record are separated from each other (and the checksum) by a space.

SSSS Data Checksum, adding all bytes of the data line togkettmeing a 16 bit checksum. @ars
only all the data bytes of this record.

Please note that there is no End Of File record defined.

Byte Count
The byte count cc counts the actual data bytes in the current record. Usually recerifsdaga bytes. |
don't know what the maximum number of data bytes is. It depends on the size of the data buffer in the
EMONS52.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored.

The address is represented by a 4 digitrenber (2 bytes), with the MSD first.

Data Field
The payload of the record is formed by the Datllf Thenumber of data bytes expected igegiby the
Byte Count field.

Checksum
The checksum is a 16 bit result from adding all data bytes of the record together.

Size Multiplier
In general, binary data will expand in sized by approximately 3.8 times when represented with this format.

EXAMPLE
Here is an example of an EMONS?2 file:
10 0000:57 6F 77 21 20 44 69 64 20 79 6F 75 20 72 65 61 0564
10 0010:6C 6C 79 20 67 6F 20 74 68 72 6F 75 67 68 20 61 05E9
10 0020:6C 6C 20 74 68 69 73 20 74 72 6F 75 62 6C 65 20 O5ED
10 0030:74 6F 20 72 65 61 64 20 74 68 69 73 20 73 74 72 O5F0
04 0040:69 6E 67 21 015F

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/emon52.htm

Reference Manual SRecord 89

srec_emon52(5) srec_emon52(5)

AUTHOR
This man page was taken from theab@\eb page. It was written by San Bergmans
<sanmail@bigfoot.com>

Reference Manual SRecord 90

srec_Airchild(5) srec_dirchild(5)

NAME
srec_fairchild — Fairchild Fairbug file format

DESCRIPTION
The Fairchild Fairbug format has 8-byte recorddile begins with an address record and ends with an
end-of-file record.

There are three record types in this file format.
Address records are of the form

indicating the address for the following data records.
Data records are of the form

| X | i | c |
Each data record begins with an X andagk contains 8 data bytes. Tfieharacters are hexadecimal byte
values (8 bytes). Each data byte is represented by 2 hexadecimal charactershdtaeter is a kxedigit
being the the nibble-sum of the data bytAsl-digit hexadecimal checksum follows the data in each data
record. Thechecksum represents, in hexadecimal notation, the sum of the binarglergsiof the 16
digits in the record; the half carry from the fourth bit is ignored. The programmer igngrelsaaacter
(except for address characters and the asterisk charglcieln terminates the data transfer) between a
checksum and the start character of the next data record. This space can be used for comments.

The end-of-file record has the form

*
The last record consists of an asterisk pnhich iates the end of file.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example Fairchild Fairbulg f It contains the data “Hello, World[rq] to be loaded at address
0x1000. Noticénhow the last record is padded with OXFF bytes.
S1000
X48656C6C6F2C2057C
X6F726C64210AFFFF3

*

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 91

srec_astload(5) srecaktload(5)

NAME
srec_fastload — LSI Logic Fast Load file format

DESCRIPTION
The FastLoad Format uses a compressed ASCII format that permits files to be downloaded in less than half
the time taken for Motorola S-records.

The base-64 encoding used is "A-Za-20". Thedata is encoded in groups of 4 characters (3 bytes, 24
bits).
The character '/’ is used to introduce a special function. Special functions are:

Annnnnn
Defines an address.

Bnn Define a single byte.
Cnnnn Compare the checksums. The checksum is a simpleyeo$tibit sum, of the data bytes only.

EAA Define the prograng entry point. The address will be the current address as defined By the
command. (Thé&Anumber in this command is ignored.) This must be the last entry in the file.

KAA Clear the checksum. (Th&Anumber in this command is ignored.)

SnameX
Define a symbol. The address of the symbol will be the current address as defined by the
command.

Znn Clear a number of bytes.

Size Multiplier
In general, binary data will expand in sized by approximately 1.4 times when represented with this format.

EXAMPLE
Here is an example LSI Logic Fast Load fornilat flt contains the data “Hello, World[rqg] to be loaded at
address 0.
IAAAA
SGVsbG8sIFdvemxk/BAK/ICARS/AAAA/EAA

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 92

srec_formatted_binary(5) srec_formatted_binary(5)

NAME
srec_formatted_binary — Formatted Binary file format

DESCRIPTION
This is the PDP-11 paper tape format, described in the DEC-11-GGPC-D PDP-11 "Paper Tape Software
Programming Handbook" 1972.

The file starts with a character sequence which appears aswamwédrea punched on 8-hole paper tape.
0x08, 0x1C, 0x2A, 0x49, 0x08, 0x00

Then follows a byte count, encoded big-endian in theddits of the next 4 bytes. The high bits should
be zero.

Then follows a OxFF byte.
The data follows, as mgiytes as specified in the header.

The trailer consists of the following bytes:
0x00, 0x00,
and then a 2-byte checksum (big-endian).

The alternate header sequence
0x08, 0x1C, 0x3E, 0x6B, 0x08, 0x00
is followed by an 8-nibble big-endian byte count.

Size Multiplier
In general, binary data will expand in sized very little when represented with this format.

EXAMPLE
Here is a hedump of a formatted binary file containing the data "Hello, World!".
0000: 08 1C 2A 4908 000000 ..*l....
0008: 00 OE FF 48 65 6C 6C 6F ...Hello
0010: 2C 20 57 6F 72 6C 64 21 , World!
0018: 0A 00 00 04 73 ...S

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 93

srec_forth(5) srec_forth(5)

NAME
srec_forth — FORTH file format

DESCRIPTION
This format can be read by FORTH interpreters

The file starts with HEX to set the number base.

Each line contains the address, the byte and a store command, either C! for RAM or EEC! for EEPROM

EXAMPLE
Here is an example srec[hy]fortitef It contains the data “Hello, World” to be loaded at address 0x1000.

HEX

48 1000 C!
65 1001 C!
6C 1002 C!
6C 1003 C!
6F 1004 C!
2C 1005 C!
20 1006 C!
57 1007 C!
6F 1008 C!
72 1009 C!
6C 100A C!
64 100B C!
0A 100C C!

COPYRIGHT
srec_catversion 1.62

Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 94

srec_fpc(5) srec_fpc(5)

NAME
srec_fpc — four packed code file format

SYNOPSIS
All ASCII based file formats hee me disadvantage in common: ya#l need more than double the amount
of characters as opposed to the number of bytes to be sent. Address fields and checksumweyill add e
more characters. So the shorter the records, the more charactets m£nt to get the file across.

The FPC format may be used to reduce the number of characters needed to send a file in ASCII format,
although it still needs more characters than the actual bytes it sends. FPC stands for "Four Packed Code".
The reduction is accomplished by squeezing 4 real bytes into 5 ASCII characters. VerfastSCI|

character will be a digit in the base 85 number system. Therd emengh letters, digits and punctuation

marks a&ailable to get 85 different characters, but if we use both upper case and lower case letters we will
manage. Thigmplies that the FP@& case sensitivas gposed to all other ASCII based file formats.

Base 85
The numbering system is in base 85, and is somewhat hard to understand for us humans who are usually
only familiar with base 10 numbers. Some of us understand base 2 and base 16 as well, but base 85 is for
most people somethingwe Luckily we dont haveto do ary math with this number systenWe just
convert a 32 bit number into a 5 digit number in base 882 bit number has a range of 4,294,967,296,
while a 5 digit number in base 85 has a range of 4,437,053,125, which is enough to do the trick. One
drawback is that we &hys hare © send multiples of 4 bytesyen if we actually want to send 1, 2 or 3
bytes. Unusetlytes are padded with zeroes, and are discarded at the receiving end.

The digits of the base 85 numbering system start at %, which represents the value of 0. The highest value
of a digit in base 85 is 84, and is represented by the character 'z’. If you want to check this with a normal
ASCII table you will notice that we kia ulsed one character too nyanWwhy? Idon't know, but for some

reason we hae o kip the "* character in the m. This means that after the ')’ character follows the '+’
character.

We @an use normal number ocgmsion algorithms to generate the FPC digits, with thisdifference. &
have o check whether the digit is going to be equal or larger than the ASCII value for ™. If this is the
case we hee o increment the digit once to stay clear of the ™. In base 85 MSD digits go firstnli#l
number systems!

The benefit of this all is hopefully cledor every 4 bytes we only hee © s2end 5 ASCII characters, as
opposed to 8 characters for all other formats.

Records
Now we take a bok at the the formatting of the FPC recorti¢e look at the record at bytevid, not at the
actual base 85 encodedde Only after formatting the FPC record at bytedeve corvert 4 bytes at a
time to a 5 digit base 85 numbeéf we don’t haveenough bytes in the record to fill the last group of 5
digits we will add bytes with the value of 0 behind the record.

[$ | ss| cc| fif | aaaaaaad dddddddd

The field are defined as:

$ Every line starts with the character $, all other characters are digits of base 85.
SS The checksumA one byte 2's-complement checksum of all bytes of the record.
cc The byte-countA one byte value, counting all the bytes in the record minus 4.
ffff Format code, a tavbyte value, defining the record type.
aaaaaaaa

The addressdld. A 4 byte number representing the first address of this record.
dddddddd

The actual data of this record.

Reference Manual SRecord 95

srec_fpc(5) srec_fpc(5)

Record Begin

Every record begins with the ASCII charact$t."No spaces or tabs are allowed in a record. All other
characters in the record are formed by groups of 5 digits of base 85.

Checksum field

This field is a one byte 2’'s-complement checksum of the entire reGordeate the checksum mak me
byte sum from all of the bytes from all of the fields of the record:

Then tale the 2's-complement of this sum to create the final checksum. The 2’'s-complement is simply
inverting all bits and then increment by 1 (or using thgetiee gerator). Checkinghe checksum at the
recevers end is done by adding all bytes together including the checksum itself, discarding all carries, and
the result must be $00. The padding bytes at the end of the line, shquidigheshould not be included

in checksum. But it doesireally matter if thg are, for their influence will be 0 anyway.

Byte Count
The byte countc counts the number of bytes in the current record minus 4. So only the number of address
bytes and the data bytes are counted and not the first 4 bytes of the record (checksum, byte count and
format flags). The byte count canvesany walue from 0 to 255.

Usually records hae 2 data bytes. It is not recommended to send tooyrdate bytes in a record for that
may increase the transmission time in case of errors. At8d sending only a f& data bytes per record,
because the addresgethead will be too heavy in comparison to the payload.

Format Flags
This is a 2 byte numbgindicating what format is represented in this record. Onlywddemats are
awailable, so we actually waste 1 byte in each record for treecfdiaving multiples of 4 bytes.

Format code 0 means that the address field in this record is to be treated as the absolute address where the
first data byte of the record should be stored.

Format code 1 means that the address field in this record is missing. Simply the last known address of the
previous record +1 is used to store the first data byte. As if the FPC format f@asenough already ;-)

Format code 2 means that the address field in this record is to be treated agecadeledss. Relate ©
what is not really clearThe relatve aldress will remain in effect until an absolute address isugetei
again.

Address Field
The first data byte of the record is stored in the address specified by the Addrezsafieidaa After
storing that data byte, the address is incremented by 1 to point to the address for the next data byte of the
record. Andso on, until all data bytes are stored.

The length of the address field isvays 4 bytes, if present of course. So the address range for the FPC
format is alvays 2**32.

If only the address field isggn, without aly data bytes, the address will be set as starting address for
records that hae ro address field.

Addresses between records are non sequential. There may be gaps in the addressing or the address pointer
may e&en point to lower addresses as before in the salme Butevey time the sequence of addressing

must be changed, a format 0 record must be used. Addressing within one singléseaquential of

course.

Data Field
This field contains 0 or more data bytes. The actual number of data bytes is indicated by the byte count in
the beginning of the record less the number of address bytes. The first data byte is stored in the location
indicated by the address in the addrésdl f Afterthat the address is incremented by 1 and the next data
byte is stored in that melocation. Thiscontinues until all bytes are stored. If there are not enough data
bytes to obtain a multiple of 4 we use 0x00 as padding bytes at the end of the record. These padding bytes
are ignored on the receiving side.

Reference Manual SRecord 96

srec_fpc(5) srec_fpc(5)

End of File
End of file is recognized if the first four bytes of the record all contain 0x00. In base 85 this will be
“$%%%%%6 his is the only decent way to terminate the file.

Size Multiplier
In general, binary data will expand in sized by approximately 1.7 times when represented with this format.

Example
Now it's ime for an @ample. Inthe first table you can see the byte representation of the file to be
transferred. Thdth row of bytes is not a multiple of 4 bytes. But that does not mdtiewe append $00
bytes at the end until we doveaa rultiple of 4 bytes. These padding bytes are not counted in the byte
count howeer!
D81400000000B000576F77212044696420796F 7520726561
431400000000B0106C6C7920676F207468726F7567682061
361400000000B0206C6C20746861742074726F75626C6520
591100000000B030746F207265616420746869733F000000
00000000
Only after comerting the bytes to base 85 we get the records of the FPC type file format presented in the
next table. Note that there isnalys a multiple of 5 characters to represent a multiple of 4 bytes in each
record.
$kL&@h%%,:,B.\?00EPUX0K3rO0Jl))
$;UPR'%%,:<Hn&FCG:at<GVF(;G9wlw
$7FD1p%%,:.LHmMy:>GTV%/KI7@GE[KYz
$B[6\;%%,:\KIN?GFWY/gKI1G5:;—_e
$%%%%%
As you can see the length of the lines is clearly shorter than the original ASCII lines.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/fpc.htm

AUTHOR
This man page was taken from theab@\eb page. It was written by San Bergmans
<sanmail@bigfoot.com>

For extra points: Who imented this format? Where is it used?

Reference Manual SRecord 97

srec_idt(5) srec_idt(5)

NAME
srec_idt — IDT/sim binary file format

DESCRIPTION
This format comes from Integrated Device Technology (IDT) System Integration Manager (IDT/sim).

It is almost identical to the Motorola S-Record format, except that most of each record is inahohary
there is no line termination charact@ihe 'S’ and tag characters are the same (ascii), Vel other
bytes are emitted as binargther than as a 2-byte hexadecimal ascii encoding.

SEE ALSO
srec_motorol&)
The orginal Motorola S-Record format.

srec_wilsoi5)
For a dfferent spin on making S-Record into a more densely packed binary file.

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 98

srec_intel16(5) srec_intel16(5)

NAME
srec_intel16 — Intel Hexadecimal 16-bit file format specification

DESCRIPTION
This format is also known as tihleHX16format.

This document describes the hexadecimal object file format for 16-bit microprocessors.

This format is very similar to therec_inte{5) format, except that the addresses are word addresses. The
count field is a word count.

The hexadecimal representation of binary is coded in ASCII alphanumeric charkotezsample, the

8-bit binary value 0011-1111 is 3F indaelecimal. © code this in ASCII, one 8-bit byte containing the

ASCII code for the character '3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character 'F’ (0100-0110 or 0x46) are requirEd: each byte value, the high-order hexadecimal digit

is aways the first digit of the pair of hexadecimal digits. This representation (ASCIl hexadecimal) requires
twice as may bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningfulydrowWée record are:

» Data Record

» End of File Record

» Extended Segment Address Record
» Start Segment Address Record

» Extended Linear Address Record

» Start Linear Address Record

General Record Format

Record | Record | Load Record Data Check
Mark Length | Offset | Type sum

Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon (*:")
character.

Record Length
Each record has a Record Length field which specifies the number of 16-bit words of information
or data which follows the Record Type field of the record. This field is one byte, represented as
two hexadecimal characters. The maximum value of the Record Length field is hexadecimal 'FF’
or 255.

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
words, therefore this field is only used for Data Records (if the words are loaded as bytes, the
address needs to be doubled). In other records where this field is not used, it should be coded as
four ASCII zero characters (“0000” or 0x30303030). This field one 16-bit word, represented as
four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,
represented as tmhexadecimal characters. The encoding for all the current record types are:

0 Data Record
1 End of File Record

Reference Manual SRecord 99

srec_intel16(5) srec_intel16(5)

5 Execution Start Address Record

Data Each record has a variable length Data field, it consists of zero or more 16-bit words encoded as
set of 4 hexadecimal digits, most significant dig#tf Theinterpretation of this field depends on
the Record Type field.

Checksum
Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the twos complement of the 8-bit bytes that result fromesting each pair of ASCII
hexadecimal digits to one byte of binginpm and including the Record Length field to and
including the last byte of the Datielfi. Thereforethe sum of all the ASCII pairs in a record
after cowerting to binary from the Record Length field to and including the Checksum field, is
zero.

Data Record
(8-, 16- or 32-bit formats)

Record | Record | Load Record Data Check
Mark Length | Offset | Type sum

()
The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that
male up a prtion of a memory image.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains tev ASCII hexadecimal digits that specify the number of 16-bit data words in
the record. The maximum value is 255 decimal.

Load Offset

This field contains four ASCII hexadecimal digits representing the word address at which the first
word of the data is to be placed. (For an exdent bytes address, double it.)

Record Type
This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, which
specifies the record type to be a Data Record.

Data This field contains sets of four ASCII hexadecimal digits, one set for each 16-bit data word, most
significant digit first.
Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.
Execution Start Address Record

Record | Record | Load Record | EIP (4 | Check
Mark Length | Offset | Type bytes) | sum

) (4) ©) (5)

The Execution Start Address Record is used to specifyxteaition start address for the objeitd.f This
is where the loader is to jump to begkeaution once the heload is complete.

The Execution Start Address Record can appear anywhere in a hexadecimallebjédifch a record is
not present in a hexadecimal object file, a loader is free to assign a dedautian start address.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*:") character.

Reference Manual SRecord 100

srec_intel16(5) srec_intel16(5)

Record length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the EIP register content within this record.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Address Record.

EIP This field contains eight ASCIl hexadecimal digits that specify the address. The field is encoded
big-endian (most significant digit first).

Checksum

This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

End of File Record
This shall be the last record in the file.

Record | Record | Load Record | Check
Mark Length | Offset | Type sum

*") ©) ©) @) (OxFF)

The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”. Since this
record does not containyaBPata bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated statickthe value is
0x4646, the hexadecimal encoding of the ASCII characters “FF".

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

Reference Manual SRecord 101

srec_intel16(5) srec_intel16(5)

EXAMPLE
Here is an example INHX1@éd. It contains the data “Hello, World” to be loaded at address O.
:0700000065486C6C2C6F5720726F646CFFOAAS
:00000001FF

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 102

srec_intel(5) srec_intel(5)

NAME
srec_intel — Intel Hexadecimal object file format specification

DESCRIPTION
This format is also known as thatel MCS-86 Objediormat.

This document describes the hexadecimal object file format for the Intel 8-bit, 16-bit, and 32-bit
microprocessors. Theexadecimal format is suitable as input to PROM programmers or hardware
emulators.

Hexadecimal object file format is a way of representing an absolute binary object file in ASCII. Because
the file is in ASCII instead of binarit is possible to store the file is non-binary medium such as paper-

tape, punch cards, etc.; and the file can also be displayed bte@®nals, line printers, etc.. The 8-bit
hexadecimal object file format allows for the placement of code and data within the 16-bit linear address
space of the Intel 8-bit processors. The 16-bit hexadecimal format allows for the 20-bit segmented address
space of the Intel 16-bit processors. And the 32-bit format allows for the 32-bit linear address space of the
Intel 32-bit processors.

——address-length=2 “i8hex” 16-bit
——address-length=3 “i16hex” 20-bit semented
——address-length=4 “i32hex” 32-bit linear

The hexadecimal representation of binary is coded in ASCII alphanumeric charkotezsample, the

8-bit binary value 0011-1111 is 3F indaelecimal. © code this in ASCII, one 8-bit byte containing the

ASCII code for the character '3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character 'F’ (0100-0110 or 0x46) are requirEd: each byte value, the high-order hexadecimal digit

is aways the first digit of the pair of hexadecimal digits. This representation (ASCIl hexadecimal) requires
twice as may bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningfulydrowae record are:

» Data Record (8-, 16-, or 32-bit formats)

» End of File Record (8-, 16-, or 32-bit formats)

» Extended Segment Address Record (16- or 32-bit formats)
» Start Segment Address Record (16- or 32-bit formats)

» Extended Linear Address Record (32-bit format only)

» Start Linear Address Record (32-bit format only)

General Record Format

Record | Record | Load Record | Data Check
Mark Length | Offset | Type sum

Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon (*:")
character.

Record Length
Each record has a Record Length field which specifies the number of bytes of information or data
which follows the Record Type field of the record. This field is one byte, represented as two
hexadecimal characters. The maximum value of the Record Length field is hexadecimal 'FF’ or
255.

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
bytes, therefore this field is only used for Data Records. In other records where this field is not
used, it should be coded as four ASCII zero characters (“0000” or 0x30303030). This field is two

Reference Manual SRecord 103

srec_intel(5) srec_intel(5)
byte, represented as four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,
represented as tmhexadecimal characters. The encoding for all the current record types are:

Data Record

End of File Record

Extended Segment Address Record
Start Segment Address Record

Extended Linear Address Record

gaa b W N+, O

Start Linear Address Record

Data Each record has a variable length Data field, it consists of zero or more bytes encoded as pairs of
hexadecimal digits. The interpretation of this field depends on the Record Type field.

Checksum
Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the twos complement of the 8-bit bytes that result fromasting each pair of ASCII
hexadecimal digits to one byte of binginpm and including the Record Length field to and
including the last byte of the Datilfi. Thereforethe sum of all the ASCII pairs in a record
after cowerting to binary from the Record Length field to and including the Checksum field, is
zero.

Extended Linear Address Record
(32-bit format only)

Record Record Load Record | ULBA (2 Check
Mark Length Offset Type bytes) sum
(") &) ©) (4)

The 32-bit Extended Linear Address Record is used to specify bits 16-31 of the Linear Base Address
(LBA), where bits 0-15 of the LB are zero. Bits 16-31 of the LBare referred to as the Upper Linear
Base Address (ULB). Theabsolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the Bto an dfset calculated by adding the Load Offset field of the containing Data
Record to the indeof the byte in the Data Record (0, 1, 2n).. Thisoffset addition is done) modulo 4G
(i.e.32-bits from OXFFFFFFFF to 0x00000000) results in wrapping around from the end to the beginning of
the 4G linear address defined by theALBThelinear address at which a particular byte is loaded is
calculated as:

(LBA + DRLO + DRI) MOD 4G
where:

DRLO is the Load Offset field of a Data Record.

DRI is the data byte indewithin the Data Record.
When an Extended Linear Address Record defines the value of LBA, it may appear anywhere within a
32-bit hexadecimal object file. This value remains in effect until another Extended Linear Address Record
is encountered. The LBdefaults to zero until an Extended Linear Address Record is encountered. The
contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the ULBdata information within this record.

Reference Manual SRecord 104

srec_intel(5) srec_intel(5)

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3034, the hexadecimal encoding of the ASCII character “04”, which
specifies the record type to be an Extended Linear Address Record.

ULBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Linear Base
Address alue. Thevalue is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and ULBA
fields.

Extended Segment Address Record
(16- or 32-bit formats)

Record Record Load Record | USBA (2 Check
Mark Length Offset Type bytes) sum
("))) 2

The 16-bit Extended Segment Address Record is used to specify bits 4-19 of the Segment Base Address
(SBA), where bits 0-3 of the $Bare zero. Bits 4-19 of the $Bare referred to as the Upper Segment
Base Address (USB. Theabsolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the 280 an dfset calculated by adding the Load Offset field of the containing Data
Record to the indeof the byte in the Data Record (0, 1, 2n).. Thisoffset addition is done modulo 64K
(i.e. 16-bits from OXFFFF to 0x0000 results in wrapping around from the end to the beginning of the 64K
segment defined by the 8B Theaddress at which a particular byte is loaded is calculated as:

SBA + ((DRLO + DRI) MOD 64K)
where:

DRLO is the LOAD OFFSET field of a Data Record.
DRI is the data byte indewithin the Data Record.

When an Extended Segment Address Record defines the value of SBA, it may appear anywhere within a
16-bit hexadecimal objecid. Thisvalue remains in effect until another Extended Segment Address
Record is encountered. The SBefaults to zero until an Extended Segment Address Record is
encountered.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters '02’, which is the
length, in bytes, of the UBdata information within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters '0000’, since
this field is not used for this record.

Record Type
This field contains 0x3032, the hexadecimal encoding of the ASCII character “02”, which
specifies the record type to be an Extended Segment Address Record.

USBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Segment Base
Address alue. Thdield is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and USBA
fields.

Reference Manual SRecord 105

srec_intel(5) srec_intel(5)

Data Record
(8-, 16- or 32-bit formats)

Record | Record | Load Record | Data Check
Mark Length | Offset | Type sum
()
The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that
malke up a prtion of a memory image. The method for calculating the absolute address (linear in the 8-bit
and 32-bit case and segmented in the 16-bit case) for each byte of data is described in the discussions of the
Extended Linear Address Record and the Extended Segment Address Record.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains tew ASCII hexadecimal digits that specify the number of data bytes in the
record. Themaximum value is 255 decimal.

Load Offset
This field contains four ASCII hexadecimal digits representing the offset from thg dd2
Extended Linear Address Record see Extended Segment Address Record) defining the address
which the first byte of the data is to be placed.

Record Type
This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, which
specifies the record type to be a Data Record.

Data This field contains pairs of ASCII hexadecimal digits, one pair for each data byte.

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.

Note: Care must be taken when the addresses with an record span the end of addressing. The behaviour is
different for linear and segmented addressing modes.

linear If arecord starts just short of 2**32, and would finish after 2**32, the later part of the record
wraps around to address 0. TP 8n segment If a record starts just for of a 2**16 boantary
would finish after that 2**16 boundaythe later part of the record wraps around to address 0
within the same segmentdt the next segment).

Thesrec_cafl) program will nger output records such as these, it wilvays produce separate records on
output.

Start Linear Address Record
(32-bit format only)

Record | Record | Load. | Record| EIP (4 | Check
Mark Length | Offset | Type bytes) | sum

() (4) ©) (5)

The Start Linear Address Record is used to specifyximigon start address for the objeitt.f Thevalue

given is the 32-bit linear address for the EIP registdote that this record only specifies the code address
within the 32-bit linear address space of the 80386. If the code is toxaartien in the real mode of the

80386, then the Start Segment Address Record should be used instead, since that record specifies both the
CS and IP register contents necessary for real mode.

The Start Linear Address Record can appear anywhere in a 32-bit hexadecimallebjddifch a record
is not present in a hexadecimal object file, a loader is free to assign a defautiton start address.

The contents of the individual fields within the record are:

Reference Manual SRecord 106

srec_intel(5) srec_intel(5)

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*:”) character.

Record length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the EIP register content within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Linear Address Record.

EIP This field contains eight ASCIl hexadecimal digits that specify the 32-bit EIP register contents.
The field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

Start Segment Address Record
(16- or 32-bit formats)

Record | Record | Load. | Record| CS (2 IP (2 Check
Mark Length | Offset | Type bytes) | bytes) | sum

*") 4) ©) ®)

The Start Segment Address Record is used to specifxéhation start address for the objeitd.f The

value given is the 20-bit segment address for the CS andditers. Notehat this record only specifies

the code address within the 20-bit segmented address space of the 8086/80186. The Start Segment Address
Record can appear anywhere in a 16-bit hexadecimal oligectif such a record is not present in a

hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the CS and IP register contents within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3033, the hexadecimal encoding of the ASCII character '03’, which
specifies the record type to be a Start Segment Address Record.

CSs This field contains four ASCII hexadecimal digits that specify the 16-bit CS register contents.
The field is encoded big-endian (most significant digit first).

IP This field contains four ASCII hexadecimal digits that specify the 16-bit IP register contents.
The field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, CS, and IP
fields.

End of File Record
(8-, 16-, or 32-bit formats)

Reference Manual SRecord 107

srec_intel(5) srec_intel(5)

Record | Record | Load Record | Check
Mark Length | Offset | Type sum

*") ©) ©) 1) (OxFF)

The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”. Since this
record does not containyaBPata bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record. In ancient times, x8lsed this for the start address record.

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated statickthe value is
0x4646, the hexadecimal encoding of the ASCII characters “FF".

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

EXAMPLE
Here is an example Intel kéile. It contains the data “Hello, World” to be loaded at address 0.
:0D00000048656C6C6F2C20576F726C640AA1
:00000001FF

REFERENCE
This information comes (very indirectly) froMicroprocessos and Piogrammed LogicSecond Edition,
Kenneth L. Short, 1987, Prentice-Hall, ISBN 0-13-580606-2.
http://en.wikipedia.org/wiki/Intel_HEX

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

Thesrec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/
Derivation

This manual page is deed from a file marked as follows:
Intel Hexadecimal Object File Format Specification; Revision A, 1/6/88

Disclaimer: Intel makes no representation or warranties with respect to the contents hereof and specifically
disclaims ag implied warranties of merchantability or fithess foy garticular purpose. Furthdntel

reserves the right to revise this publication from time to time in the content hereof without obligation of
Intel to notify aly person of such revision or changes. The publication of this specification should not be
construed as a commitment on Irggdart to implement anproduct.

Reference Manual SRecord 108

srec_mem(5) srec_mem(5)

NAME
srec_mem - Lattice Memory Initialization format

DESCRIPTION
A Lattice Memory Initialization format (.mem), by Lattice Semicondydiieris an ASCII text file that
consists of a header followed by lines of memory data.

Syntax
The data must be in one of the following formats: Bin (binaryy (Hexadecimal), or Address-Hex
(described below).

For hexadecimal values, both upper and lower case can be used. If the data has fewer bits than the specified
data width, the most significant bits are filled with 0. yAaaldress not specified will be filled with O.

Comments can be added ay aoint after the header (defined below) by starting the comment with a
pound sign (#) or tavdashes (//). The comment then includesrgthing to the end of the line. Comments
may be added to grof the data, but ner add comments to the header.

Header
A .memfile starts with a headewrhich declares the file format, memory size, and address and data display
radix for Memory GeneratorfThe syntax of the header is:
#Format=Bin | Hex | AddrHex
#Depth=1 to 65536
#Width=1 to 256
#AddrRadix= index-number
#DataRadix= index-number
#Data
Theindex-numbecan be one of the following numbers. AddrRadix and DataRadix cendiferent
values.
Binary: 0
Octal: 1
Decimal: 2
Hexadecimal: 3

For example, the following header says the .mem file is using the binary format for a 32x8 m¥vneny
displayed in Memory Generatdhe address will be shown in hexadecimal and the data will be shown in
binary.

#Format=Bin

#Depth=32

#Width=8

#AddrRadix=3

#DataRadix=0

#Data

Bin and Hex Formats
The data is represented in binary or hexadecimal format. Each line of data specifies the contents for one
memory location, starting with address 0. That is, the first line is for address 0, the second line is for
address 1, and so ofror each line, the data is interpreted as least significant bit on the right.

For example, in the Bin format, the following lines will initialize address 0 to “00011011", address 1 to
“11111010" (assuming it is a 32x8 memory).

for a 32x8 memory

11011

11111010

In the Hex format, the following lines will initialize address 0 to “003B”, address 1 to “FBOA” (assuming it
is a 32x16 memory).

for a 32x16 memory

3B

Reference Manual SRecord 109

srec_mem(5) srec_mem(5)

FBOA
AddrHex

The data is represented in hexadecimal format. Each line consists of an address followed by a colon and
then aly number of data words, separated by spaces:
addressdata data> data.

The data will be applied starting at <address> and filling in sequentially from there.
For example:
A0:03 F3 3E 4F
B2:3B 9F
will initialize AO with 03, A1 with F3, A2 with 3E, A3 with 4B2 with 3B, and B3 with 9F The other
addresses will be initialized to 0. So A4 through B1 will be set to 0.
See Also

http://help.latticesemi.com/docs/webhelp/eng/wwhelp/wwhimpl/common/html/wwhelp.htm#href=Design%20Entry/r
Size Multiplier

The size multiplier depends on the width selected. As files tamer their size multipliers will approach
those in the table, from aba

Width Linux Wndows
8 2.96 3.0
16 2.47 2.5

32 2.25 2.28
64 2.13 2.15

Byte Order
This format is implicitly big-endian. Use a —byte-swap filter if you need something different.
COPYRIGHT
srec_menversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_menprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_mem
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_mem -VERSion Licens®mmand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/
Reference Manual SRecord

110

srec_mif(5) srec_mif(5)

NAME
srec_mif — Memory Initialization File (MIF) format

DESCRIPTION
This format was ivented by Altera.

An ASCII text file (with the extension .mif) that specifies the initial content of a memory block (CAM,
RAM, or ROM), that is, the initial values for each address. This file is used during project compilation
and/or simulation. You can create a Memory Initialization File in the Memory Etfison-System
Memory Content Editoror the Quartus Il &xt Editor.

A Memory Initialization File serves as an input file for memory initialization in the Compiler and
Simulator You can also use a Hexadecimal (Intel-Format) File (.hex) to provide memory initialization data.

A Memory Initialization File contains the initial values for each address in the mefnsaparate file is

required for each memory block. In a Memory Initialization File, you must specify the memory depth and
width values. In addition, you can specify data radixes as binary (BIN), hexadecimal (HEX), octal (OCT),
signed decimal (DEC), or unsigned decimal (UNS) to display and interpret addresses and data values. Data
values must match the specified data radix.

When creating a Memory Initialization File in the QuartuseiktEditor, you must start with the DEPTH,
WIDTH, ADDRESS_RADIX and BTA_RADIX keywords. You can use Tab " and Space " " characters
as separators, and insert multiple lines of comments with the percent "%" charszt®rgle comment
with double dash "—-" characters. Address:data pairs represent data contained inside certain memory
addresses and you must place them between the CONTENT BEGIN andelgh@dds, as shown in the
following examples.

% mltiple-line comment

multiple-line comment %

—— single-line comment

DEPTH = 32; —— The size of data in bits

WIDTH = 8§; —— The size of memory in words
ADDRESS RADIX = HEX; —— The radix for address values
DATA_RADIX = BIN; —— The radix for data values
CONTENT —— start of (address : data pairs)
BEGIN

00 : 00000000; —— memory address : data

01 : 00000001,
02 : 00000010;
03 : 00000011,
04 : 00000100;
05 : 00000101,
06 : 00000110;
07 : 00000111,
08 : 00001000;
09 : 00001001,
OA : 00001010;
0B : 00001011,
0C : 00001100;
END;

There are sgral ways to specify the address and data, as seen in the following table:

Notation Interpretation Example

A:D; Addr[A] =D 2:4
Address: 01234567
Data: 00400000

Reference Manual SRecord 111

srec_mif(5) srec_mif(5)

[AO..Al1]: D; Addr[AQ] to [Al] contain [0..7]: 6
(See note below.) data D Address: 01234567
Data: 66666666

[AO..A1] : DO D1; Addr[A0] = DO, [0.7]:56

(See note below.) Addr[AO+1] = D1, Address: 01234567
Add [A0+2] = DO, Data: 56565656
Addr[A0+3] = D1,
until AO+n = Al

A : DO D1 D2; Addr[A] = DO, 2:456
Addr[A+1] = D1, Address: 01234567
Addr[A+2] = D2 Data: 00456000

Note: The address range forms are limited in SRecord, the range must be less than 255 bytes. SRecord will
never write an address range.

Note: When reading MIF file, SRecord will round up the number of bits in the WIDTH to be a multiple of
8. Multi-bytevalues will be laid down in memory as big-endian.

An ASCII text file (with the extension .mif) that specifies the initial content of a memory block (CAM,
RAM, or ROM), that is, the initial values for each address. This file is used during project compilation
and/or simulation.A MIF contains the initial values for each address in the mentorg MIF, you are

also required to specify the memory depth and widthes. Inaddition, you can specify the radixes used
to display and interpret addresses and data values.

SIZE MULTIPLIER
In general, binary data will expand in sized by approximately 3.29 times when 8-bit data is represented
with this format (16 bit = 2.75, 32 bit = 2.47, 64 bit = 2.34).

EXAMPLE
Fdlowing is a sample MIF:

DEPTH = 32; % Memory depth and width are required %

% [EPTH is the number of addresses %

WIDTH = 14; % WIDTH is the number of bits of data per word %

% [EPTH and WIDTH should be entered as decimal numbers %

ADDRESS_RADIX = HEX; % Address and value radixes are required %

DATA_RADIX = HEX; % Enter BIN, DEC, HEX, OCT, or UNS; unless %

% dherwise specified, radixes = HEX %

——Specify values for addresses, which can be single address or range

CONTENT

BEGIN

[0..F]: 3FFF; % Rnge: Every address from 0 to F = 3FFF %
6 : F; % Single address: Address 6 = F %

8 : F E 5; % Range starting from specific address %

- % Addr[8] = F, Addr[9] = E, Addr[A] =5 %
END;

REFERENCE
The abee information was gleaned from the following sources:
http://www.altera.com/support/software/vatink/quartus2/glossary/def_mif.html
http://www.mil.ufl.edu/4712/docs/mif _help.pdf

COPYRIGHT
srec_mifversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_mifprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_mif
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_mif —VERSion Licenseommand.

Reference Manual SRecord 112

srec_mif(5) srec_mif(5)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 113

srec_mips_flash.5(5) srec_mips_flash.5(5)

NAME
srec_mips_flash — MIPS-Flash file format

DESCRIPTION
The MIPS SDE tool chain hasanvertprogram that is able to output this formahaveno idea what
reads it, some kind of flash programmer | suppose.

Format
The file must start with 'R’ to reset the state machine. White space appears to be ignored, except as it
serves to separate tokens.

Data is presented as 32-bit hexadecimal numbers, in the normal big-endian text numberTimumide.
them to memoryyou have o know if the target is big-endian or little-endian. for little endian targets,
reverse the order of the bytes in this number.

The eight bytes following a ">’ are a sort of comment. The SDE code readbdjkare displayed in the
flash programmer as a kind of progress indicator.

The number following '@’ is a meaddress for the following data.

Each segment must be erased before it can be written, this is done with the ''"E’ command. Each segment is
assumed to be 128KkB in size.

Special segments must unlocked (with the '!C’ command) and locked again (with the 'IS’ command).
This file format contains no checksum mechanism.

Command Line Options
This format is specified using one of thelips-Flash-Big_Endian or —Mips-Flash-Little_Endian
options. Theendian-ness must be specified on the command line, because there is nothing in the file
contents to indicate the endian-ness of the data it contains.

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format
(worse if you use shorter lines).

EXAMPLE
Here is an example MIPS-Flaslef It contains the data “Hello, World” to be loaded at bytes address
0x0000 (but remembgthe file contents areabys multiples of four bytes).
IR
>00000xxx @00000000 'E
@00000000
>00000000
48656C6C 6F2C2057 6F726C64 210A0000
>#DL_DONE
>FINISHED

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

Reference Manual SRecord 114

srec_mips_flash.5(5) srec_mips_flash.5(5)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/
COPYRIGHT

srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 115

srec_mos_tech(5) srec_mos_tech(5)

NAME
srec_mos_tech — MOS Technology file format

DESCRIPTION
The MOS Technology format allows binary files to be uploaded and downloaded between between a
computer system (such as a PC, Macintosh, or workstation) and an emulatnaticn board for
microcontrollers and microprocessors.

The Lines
Each line consists of $elds. Thesare the length field, address field, data field, and the checksum. The
lines alvays start with a semicolon (;) character.

The Fields

|; | Length | Address| Datd Checksum CR|F

Length The record length field is a 2 character (1 byte) field that specifies the number of data bytes in the
record. Fpically this is 24 or less.

Address This is a 2-byte address that specifies where the data in the record is to be loaded into memory,
big-endian.

Data The data field contains theeeutable code, memory-loadable data or desedptiformation to
be transferred.

Checksum
The checksum is an 2-byte field that represents the least significabytes of the the sum of
the values represented by the pairs of characters making up thegésmagth, address, and data
fields, big-endian.

End of File
The final line should hee a dta length of zero, and the data line count in the addedds Thechecksum
is not the usual checksum, it is instead a repeat of the data line count.

Size Multiplier
In general, binary data will expand in sized by approximately 2.54 times when represented with this format.

EXAMPLE
Here is an example MOS Technology formikg f It contains the data “Hello, World” to be loaded at
address 0.
;0C000048656C6C6F2C20576F726C640454
;0000010001

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

Thesrec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

KIM-1 User Manual — Appendix F — Paper Tape Format
(The following information is reproduced from http://users.telenet.be/kim1-6502/6502/usrman.html#F just
in case it vanishes from the Web.)

The paper tape LOAD and DUMP routines store and wetideta in a specific format designed to insure
error free receery. Each byte of data to be stored is wented to two half bytes. The half bytes (whose
possible values are 0 to F HEX) are translated into their ASCNagois and written out onto paper tape

Reference Manual SRecord 116

srec_mos_tech(5) srec_mos_tech(5)

in this form.

Each record outputted begins with a “;” character (ASCII 3B) to mark the start of a valid record. The next
byte transmitted (18HEX) or (24 decimal) is the number of data bytes contained in the record. The record’s
starting address High (1 byte, 2 characters), starting address Lo (1 byte, 2 characters), and data (24 bytes,
48 characters) follw. Each record is terminated by the recerdieck-sum (2 bytes, 4 characters), a

carriage return (ASCII 0OD), line feed (ASCII 0A), and six “NULL” characters (ASCII 00). (NULL

characters cause a blank area on the paper tape.)

The last record transmitted has zero data bytes (indicated by ;00) The starting address field is replaced by a
four digit Hex number representing the total number of data records contained in the transmission, followed
by the records usual check-sum digits. An “XOFF” character ends the transmission.
;180000FFEEDDCCBBAA0099887766554433221122334455667788990AFC
;0000010001
During a “LOAD” all incoming data is ignored until a *;” character is reegi Thereceipt of non ASCII
data or a mismatch between a records calculated check-sum and the check-sum read from tape will cause
an error condition to be recognized by KIM. The check-sum is calculated by adding all data in the record
except the “;” character.

The paper tape format described is compatible with all other MOS Techpisloggoftware support
programs.

Reference Manual SRecord 117

srec_motorola(5) srec_motorola(5)

NAME
srec_motorola — Motorola S-Record hexadecimal file format

DESCRIPTION
This format is also known as tB&orciser Exormacsor Exormaxformat.

Motorola’s Srecord format allows binary files to be uploaded and downloaded betweeorvputer
systems. Thigype of format is widely used when transferring programs and data between a computer
system (such as a PC, Macintosh, or workstation) and an emulat@iuatien board for Motorola
microcontrollers and microprocessors.

The Lines
Most S-Record file contain only S-Record lines (see the next section), wivifs aitart with a capital S
character Some systems generate various “extensions[rq] which usually manifest as lines which start with
something else. These “extension[rqg] lines may or may not break other systems made by other vendors.
Caveat emptor.

The Fields
The S-Record format consists of 5 fields. These are the type field, length field, address field, data field, and
the checksum. The lineswadys start with a capital S character.

| S | Type | RecordLength Address Data Checkgum

Type The type field is a 1 character field that specifies whether the record is an SO, S1, S2, S3, S5, S6,
S7, S8 or S9 field.

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the record, excluding the type and record length fields.

Address This is a 2-, 3- or 4-byte address that specifies where the data in the S-Record is to be loaded into
memory.

Data The data field contains theeeutable code, memory-loadable data or desedptiformation to
be transferred.

Checksum
The checksum is an 8-bit field that represents the least significant byte of thecomglement
of the sum of the values represented by the pairs of characters making up the lexogifd’
address, and data fields.

Record Types
SO This type of record is the header record for each block of S-Records. The data field may contain
ary descriptve information identifying the following block of S-Records. (It is commonly
“HDRI[rq] on mary systems.) Theaddress field is normally zero.

S1 A record containing data and the 2-byte address at which the data is to reside.
S2 A record containing data and the 3-byte address at which the data is to reside.
S3 A record containing data and the 4-byte address at which the data is to reside.
S5

An optional record containing the number of S1, S2 and S3 records transmitted in a particular
block. Thecount appears in the two-byte addresklf Theres no data field.

This record is optional, you do notJeaio use it. Nobody knows if you can W& nore than one
in a file; and if you do, nobody knows whether or not the line count resets after each one.

Thesrec_cattommand will only @er use one, provided the number of lines fits in 16 bits,
otherwise it will use S6.

S6
An optional record containing the number of S1, S2 and S3 records

Reference Manual SRecord 118

srec_motorola(5) srec_motorola(5)

transmitted in a particular block. The count appears in the three-byte address
field. Therds no data field.

This record is optional, you do notJgaio use it. Nobody knows if you can
have nore than one in a file; and if you do, nobody knows whether or not the
line count resets after each one.

Nobody knows what happens if you mix S5 and S6 records in a file.

Thesrec_cattommand will only ger use one, provided the number of lines

fits in 24 bits.

S7 A termination record for a block of S3 records. The address field may contain
the 4-byte address of the instruction to which control is passed. There is no
data field.

S8 A termination record for a block of S2 records. The address field may

optionally contain the 3-byte address of the instruction to which control is
passed. Thers no data field.

S9 A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which control is
passed. Ihot specified, the first entry point specification encountered in the
object module input will be used. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example S-Recoilgf It contains the data “Hello, World[rg] to be loaded at address O.
S00600004844521B
S110000048656C6C6F2C20576F726C640A9D
S5030001FB
S9030000FC

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 119

srec_msbin(5) srec_msbin(5)

NAME
srec_msbin — Windows CE Binary Image Data Format

DESCRIPTION
This format is the output of the Microsoft WinCE Platform Build€his is a binary (non-text) file format.
File names in this format typically (ambiguously) use.tie suffix.

File Format
Files in this format start with a header record.

Then comes the data itselfganized into records.
The file finishes with anxecution start address record. This is mandatory.

File Header Record
Data in this format start with an optional header containing the magic “BO00OFF\n”, followed by the image
start (four bytes, little endian) address and the span of the image (highest address - lowest address + 1)
(four bytes, little endian). The file header does neetehecksum; it is therefore possible that a corrupt
file header will go undetected.

Magic Least Greatest
“BOOOFF\n” Address Address
(7 bytes) (4 bytes) (4 bytes)

There is no provision for a file comment ofyddnd.

Data Record
Each record consists of a record start address (four bytes, little endian), a record length (four bytes, little
endian), a record checksum (four bytes, little endian), followed by the record data. The data part of each
record is rav byte values, no encoding.

Start Length Checksum Data
address (4 bytes) | (4 bytes)
(4 bytes)

The checksum is calculated by a simple sum of unsigned bytes into a 32-bit accumulator.

The 12 record header bytes are not included in the record checksums; it is therefore possible that a corrupt
record header will go undetected.

It is not possible to place data at address zero with this format. Address zero is reserved for use by the
execution start address record.

There is effectiely no limit on the length of a record (2°32-1). It is not uncommon for a MsBin file to
contain records with sizes in the tens ofalgytes.

Execution Start Address Record
Last comes a special record with the record address set to zero and record length set to tkecutiage e
start address. According to specification the record describing¢hatmn start address must bavays
present, and mustvadys be the last record in the file.

Zero Start Checksum
(4 bytes) Address | =0
(4 bytes) | (4 bytes)

Commentary
The MsBin files produced by SRecord are valid and can be successfully parsed by the command line
utilities viewbin andcvrtbin (part of Windows CE platform).

For a MsBin file to be usable in Microsoft WinCE Platform Builder it has to contain a TOC meta-structure.
This is data embedded in the file by Microsoft WinCE Platform Builder itself.

The opposite carersion — from MsBin — comes in handy when analyzing a MsBinifiéeg ANnCE
image).

Reference Manual SRecord 120

srec_msbin(5) srec_msbin(5)

Size Multiplier
In general, binary data will expand in sized by approximately 1.0 times (approaching asymptotically from
aborve) when represented with this format, as the 15-byte file headesrsged oer the data content.
Holes in the data will also increase the size.

SOURCE
http://msdn.microsoft.com/en-us/library/ms924510.aspx

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 121

srec_needham(5) srec_needham(5)

NAME
srec_needham — Needham EMP-series programmer ASCII file format

DESCRIPTION
This format is understood by Needham Electronics’ EMP-series programmers. See
www.needhams.com/winman.pdf for more information. (This format is very similar to the ASCII-
Hex format, but without the "B and "C guard characters.)

Each data byte is represented as 2 hexadecimal characters, and is separated by white space from all other
data bytes.

The address for data bytes is set by using a sequefié@ofn, characters, whenennnis the

8-character ascii representation of the address. The comma is required. There is no need for an address
record unless there arags. Implicitly the file starts a address 0 if no address is set before the first data
byte.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example asciishéle. It contains the data “Hello, World[rq] to be loaded at address 0x1000.
$A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 122

srec_0s65v(5) srec_0s65v(5)

NAME
srec_os65v — OS65V Loader file format

DESCRIPTION
This format is used by Ohio Scientific OS65V-compatible loaders. This family of machines includes the
OSI C1RSuperboard Il, C2, C4, C8, and Challenger Ill, as well as the UK101, and Elektor Junior.

The file startes with a period (0x2E), to ensure address entry mode. then a 4-digidddress, followed
by a slash '/ (0X2F) to enter the data entry mode. The initial addressagsgbresent. There is no need
for an additional address record unless there are gaps.

Each data byte is represented as 2 hexadecimal characters, and is separated by a carriage return character
(Ox0OD) (advance address). The final return character may be omitted.

The data is concluded with a period Ox2E) to re-enter address mode. If an address to gtdteon is
specified, then the last 5 bytes arenrG wherennnnis the 4-digit &ecution address, and G is the 'Go’
command.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example asciishéle. It contains the data “Hello, World[rq] to be loaded at address 0x1000,
with execution at 0x1003. (On a 6502, this is the opcode for indirect jump to 0x2C6F.)

1000/48°"M65"M6C"M6C"M6F"M2C"M20"M57"M6F"M72"M6C"M64°"MOA"M.1010G

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 123

srec_ppb(5) srec_ppb(5)

NAME
srec_ppb — Stag Prom Programmer binary format

DESCRIPTION
This is the natie inary format of the Stag Prom Programmer.

Format
The format is packet based. The packet is somposed of an 0x01 byte, the packet payload size (4 bytes, big-
endian), the packet address size (4 bytes, big-endian), the packet data, and a one-byte simple sum of the
payload data.

If the packet payload is more than 1024 bytes, there is an intermediate checksum after each 1024th payload

pyte.

The end of file is indicated by a packet with a zero-length payload.

Command Line Option
This format is specified using th¢?PB command line option.

Size Multiplier
In general, binary data will expand in sized by approximately 1.002 times when represented with this
format (worse if there are mashort data regions).

SEE ALSO
http://www.stag.co.uk/

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 124

srec_ppx(5) srec_ppx(5)

NAME
srec_ppx — Stag Prom Programmer hexadecimal format

DESCRIPTION
This is the natie hrexadecimal format of the Stag Prom Programmer.

Format
The file must start with an asterisk '*' on a line by itself.

Each line has a 16-bit address, followed by 8-bit bytes.
The end is indicated by '$S’ folloowed by a 16-bit checksum of the data bytes asligitse

Command Line Option
This format is specified using th¢?PX command line option.

Size Multiplier
In general, binary data will expand in sized by approximately 3 times when represented with this format
(worse if you use shorter lines).

EXAMPLE
Here is an example PPXd. It contains the data “Hello, World” to be loaded at bytes address 0x0000 (but

rememberthe file contents areabys multiples of four bytes).
*

0000 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A $50473

SEE ALSO
http://matthieu.benoit.free.fr/pdf/pp39.pdf http://www.stag.co.uk/

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 125

srec_signetics(5) srec_signetics(5)

NAME
srec_signetics — Signetics file format

DESCRIPTION

The Signetics file format is not often used. The major disadvantage in modern applications is that the
addressing range is limited to only 64kb.

Records
All data lines are called records, and each record contains the following 5 fields:

|: | aaaa| cc| as dd ds

The field are defined as follows:
Every record starts with this identifier.

aaaa The addreselfd. A four digit (2 byte) number representing the first address to be used by this

record.
cc The byte-countA two dgit value (1 byte), counting the actual data bytes in the record.
as Address checksum. @ws 2 address bytes and the byte count.
dd The actual data of this record. There can be 1 to 255 data bytes per record (see cc)
SS Data Checksum. @ers only all the data bytes of this record.

Record Begin
Every record begins with a colon “:[rq] charact®ecords contain only ASCII characters. No spaces or
tabs are allowed in a record. In fact, apart from the 1st colon, no other characters than 0..9 and A..F are
allowed in a record. Interpretation of a record should be case less, it does not matter if you use a..f or A..F.

Unfortunately the colon was chosen for the Signetics file format, similar to the Intel format (see
srec_intef5) for more information). Howeer, SRecord is able to automatically detect the dofference
between the tavformat, when you use th&suessformat specifier.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored. The address is represented by a 4 xligintiger (2 bytes), with the MSD first.
The order of addresses in the records of a file is not important. The file may also contain address gaps, to
skip a portion of unused memory.

Byte Count

The byte count cc counts the actual data bytes in the current record. Usually recer@sdaga bytes,
but any number between 1 and 255 is possible.

A value of 0x00 for cc indicates the end of tie. fIn this case notven the address checksum will follow!
The record (and file) are terminated immediately.

It is not recommended to send too maata bytes in a record for that may increase the transmission time
in case of errors. Alsovaid sending only a f@ data bytes per record, because the addneskend will be

too heavy in comparison to the payload.
Address Checksum

This is not really a checksum anymore, it looks more &KRC. Thechecksum can not only detect errors
in the values of the bytes, but also bytes out of order can be detected.

The checksum is calculated by this algorithm:
checksum =0
fori=1to3
checksum = checkum XOR byte
ROL checksum
next i
For the Address Checksum we only need 2 Address bytes and 1 Byte Count byte to be addedhyrhat’

Reference Manual SRecord 126

srec_signetics(5) srec_signetics(5)

we count to 3 in the loop. Every byte is XORed with the previous result. Then the intermediate result is
rolled left (carry rolls back into bO0).

This results in a very reliable checksum, and that for only 3 bytes!
The last record of the file does not contaig elmecksums! Sthe file ends right after the Byte Count of 0.

Data Field
The payload of the record is formed by the Dallf Thenumber of data bytes expected igegiby the
Byte Countield. Thelast record of the file may not contain a Data field.

Data Checksum
This checksum uses the same algorithm as used for the Address Checksum. This time we calculate the
checksum with only the data bytes of this record.
checksum =0
fori=1tocc
checksum = checksum XOR byte
ROL checksum
next i
Note that we count to the Byte Count cc this time.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE

Here is an example Signetics file
:BO0010A5576F77212044696420796F75207265617B
:BO1010E56C6C7920676F207468726F756768206136
:B02010256C6C20746861742074726F75626C652068
:BO300D5F746F207265616420746869733FD1
:BO3D00

In the example ah@ you can see a piece of code in Signetics format. The first 3 limeslbdytes of

data each, which can be seen by the byte count. The 4th line has only 13 bytes, because the program is at

it's end there.

Notice that the last record of the file contains no data bytes, andamcdre Address Checksum.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/signetics.htm

AUTHOR
This man page was taken from theab@\eb page. It was written by San Bergmans
<sanmail@bigfoot.com>

Reference Manual SRecord 127

srec_spasm(5) srec_spasm(5)

NAME
srec_spasm — SPASM file format

DESCRIPTION
This format is the output of the Paralax SPASM assembler detunct, I'm told). The file contains two
columns of 16-bit hexadecimal codemlues. Thdirst column is the word address, the second column is
the word data.

By default, SRecord treats this is big-endian data (the most significantrbjte If you want little endian
order use the —spasm-le argument instead.

Size Multiplier
In general, binary data will expand in sized by approximately 5.0 times when represented with this format
(5.5 times in Windows).

EXAMPLE
Here is an example SPASNEf It contains the data “Hello, World[rq] to be loaded at bytes address
0x0100 (but remembgthe file contents are word addressed).
0080 6548
0081 6C6C
0082 2C6F
0083 5720
0084 726F
0085 646C

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 128

srec_spectrum(5) srec_spectrum(5)

NAME
srec_spectrum — Spectrum file format

DESCRIPTION
In this format, bytes are recorded as ASCII code with binary digits represented by 1s and 0s. Each byte is
preceded by a decimal address.

The file ends with a Control-C character (0x03).

Size Multiplier
In general, binary data will expand in sized by approximately 14 times when represented with this format
(or 15 times on DOS or Windows).

EXAMPLE

Here is an example Spectruitef It contains the data “Hello, World[rq] to be loaded at address 0x0.
"B
0000 01001000
0001 01100101
0002 01101100
0003 01101100
0004 01101111
0005 00101100
0006 00100000
0007 01010111
0008 01101111
0009 01110010
0010 01101100
0011 01100100
0012 00100001
0013 00001010
C

COPYRIGHT

srec_catversion 1.62

Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 129

srec_steie(5) srec_stsie(5)

NAME
srec_stewie — Stewiehinary file format

DESCRIPTION
If you hare a LRL for documentation of this format, please let mevkno

Any resemblance to the Motorola S-Record is superficial, and extends only to the data records. The header
records and termination records are completeferdint. Noneof the other Motorola S-Records record
type are aailable.

The Records
All records start with an ASCII capital S charactalue 0x53, followed by a type specifier byte. All
records consist of binary bytes.

The Header Record
Each file starts with a fixed four byte header record.

| 0x53 | 0x30| 0x30| 0x33

The Data Records
Each data record consists of 5 fields. These are the type field, length field, address field, data field, and the
checksum. Thénes alvays start with a capital S character.

| 0x53 | Type | Record Length Address Data Checksum

Type The type field is a one byte field that specifies whether the record has a two-byte address field
(0x31), a three-byte address field (0x32) or a four-byte address field (0x33). The address is big-
endian.

Record Length
The record length field is a one byte field that specifies the number of bytes in the record
following this byte.

Address This is a 2-, 3- or 4-byte address that specifies where the data in the record is to be loaded into
memory.

Data The data field contains theeeutable code, memory-loadable data or desegptiformation to
be transferred.

Checksum
The checksum is a one byte field that represents the least significant byte of the one’s
complement of the sum of the values represented by the bytes making up the tecgti,
address, and data fields.

The Termination Record
Each file ends with a fixed thbyte termination record.

Size Multiplier

In general, binary data will expand in sized by approximately 1.2 times when represented with this format.

Reference Manual SRecord 130

srec_steie(5) srec_stsie(5)

EXAMPLE
Here is an hex-dump examplief It contains the data “Hello, World[rqg] to be loaded at address 0.
0000: 53 30 30 3353 31 10 00 00 48 65 6C 6C 6F 2C 20 S003S1...Hello,
0010: 57 6F 72 6C 64 0A 9D 53 38 World..S8

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 131

srec_tektronix(5) srec_tektronix(5)

NAME
srec_tektronix — Tektronix hexadecimal file format

DESCRIPTION
The Tektronix hexadecimal file format is no longer very common. It serves a similar purpose to the
Motorola and Intel formats, usually used to transfer data into EPROM programmers.
The Lines
Most Tektronix h& files contain only Tektronix xdines (see the next section), whictvals start with a
slash (“/[rq]) characterThere are only tevtypes of lines — data lines and a termination line.
Data Lines

Data lines hee five fields: address, length, checksum 1, data and checksum 2. Theiags sthrt with a
slash (“/[rq]) character.

|/ | Address| Length] Checksumfl Data Checksym2

Address This is a 4 character (2 byte) address that specifies where the data in the record is to be loaded
into memory.

Data Length
The data length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the datddld. Thisfield never has a value of zero.

Checksum 1

The checksum 1 field is a 2 character (1 bytRIf Itsvalue is the 8-bit sum of the six 4-bit
vaues which mag& up he address and length fields.

Data The data field contains character pairs (bytes); the number of character pairs (bytes) is indicated
by the length field.
Checksum 2
The checksum 2 field is a 2 character (1 bytRIf Itsvalue is the least significant byte of the
sum of the all the 4-bit values of the data field.
Termination Line

Termination lines hee tree fields: address, zero and checksum. The limeyalstart with a slash (“/[rq])
character.

|/ | Address| Zero| Checksum
Address This is a 4 character (2 byte) address that specifies where toxgegtioe.
Zero The data length field is a 2 character (1 byte) field of value zero.

Checksum

The checksum 1 field is a 2 character (1 bytIf Itsvalue is the 8-bit sum of the six 4-bit
values which ma& up he address and zero fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

Reference Manual SRecord 132

srec_tektronix(5) srec_tektronix(5)

EXAMPLE
Here is an example Tektronix>héle. It contains the data “Hello, World[rqg] to be loaded at address 0.
/00000D0D48656C6C6F2C20576F726C640A52
/00000000

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 133

srec_tektronix_xended(5) srec_tektronixxeended(5)

NAME
srec_tektronix_extended — Tektronix Extended hexadecimal file format

DESCRIPTION
This format allows binary files to be uploaded and downloaded betwesmmputer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulatoatmmeboard
for microcontrollers and microprocessors.

The Lines
Lines alvays start with a percent (%) charact&ach line consists of 8eids. Thesare the length field,
the type field, the checksum, the address field (including address length), and the data field.

The Fields

| % | Length | Type| Checksum Addre§s Data

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of characters (not
bytes) in the record, excluding the percent, the length field, the type field and the checksum.

Type The type field is a 1 character field that specifies whether the record is data (6) or termination (8).

Checksum
The checksum is an 2 character (1 byte) field that represents the sum of all the nibbles on the line,
excluding the checksum.

Address This is a 9 charactézlfl. Thefirst character is the address size; itvgags 8. The remaining 8
chgaracters are the 4-byte address that specifies where the data is to be loaded into memory.

Data The data field contains theeeutable code, memory-loadable data or desedptiformation to
be transferred.

Record Types
6 A record containing data. The data is placed at the address specified.

8 A termination record. The address field may optionally contain the address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.5 times when represented with this format.

EXAMPLE
Here is an example Tektronix extendéel. f It contains the data “Hello, World[rqg] to be loaded at address
0x006B.
%256D980000006B48656C6C6F2C20576F726C64210A
%09819800000000

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

Thesrec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 134

srec_ti_tagged_16(5) srec_ti_tagged_16(5)

NAME
srec_ti_tagged_16 —eXas Instruments Tagged (SDSKa/820) file format

DESCRIPTION
This format is also known as thiéTaggel or Texas Instruments SDSMA320) format.

This format allows binary files to be uploaded and downloaded betwesmmputer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulatoatmmeboard
for 16-bit microcontrollers and microprocessors.

The Lines
Unlike mary other object formats, the lines themselves are not especiallyisignif Theformat consits of
a rumber oftagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

End of file.

File header (optional).
Checksum.

Dummy checksum (ignored).
Word Address.

Data word.

End of data record.

Program identifier (optional).

(Bl n[n]

One byte of data. Thenis 8-bit big-endian hexadecimal.

End of File
[[CRUF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

XTWO©Ow~NO "

Data Byte

File Header

|0 | length | flename]

The optional start-of-file record begins with a tag character ('0’) and a 12-character file hbadest
four characters are the count (in hex) of the 16-bit data word values (B) whiat, faitdncluding data
byte values (*). The remaining file header characters are the name of the file and maABEHN
characters, blank padded.

Checksum

(7 n][n[n]n

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7jinfihes 16-bit big-endian hexadecimal.

Reference Manual SRecord 135

srec_ti_tagged_16(5) srec_ti_tagged_16(5)

Dummy Checksum

[(8[n]n[n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8jnfihes 16-bit big-endian hexadecimal.

Address

9 n[n[n]n]
Addresses may bewgn for ary data byte, but none is mandatofjhe file begins at 0000 if no address is
given before the first datadld. Thennnnis 16-bit big-endian hexadecimal.
Data Word

[(Blala[b]b]

Two bytes of data. Thaaandbbare each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag. The checksum is
reset to zero at this point.

Program ldentifier

[(Kn[n[n]n] ed

The program identifier can contain a brief description of the program, or can be eeiy ¢ext portion
is optional). Thennnnlength (hex) of the field includes the ‘K’, the length and the text; it is at least 5.
Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.
EXAMPLE

Here is an example TI-Taggeitef It contains the data “Hello, World[rq] to be loaded at address 0x0100.
K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0A7F641F

Here is another example from the reference below
00028 7FDCFF
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90008BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F8F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90018BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F7F
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF

SEE ALSO
http://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-7)
COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&ommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

Reference Manual SRecord 136

srec_ti_tagged_16(5) srec_ti_tagged_16(5)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 137

srec_ti_tagged(5) srec_ti_tagged(5)

NAME
srec_ti_tagged —ékas Instruments Tagged (SDSMAC) file format

DESCRIPTION
This format is also known as thé& Tagged or TI-SDSMACformat.

This format allows binary files to be uploaded and downloaded betwesmtmputer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulatoatmmeboard
for microcontrollers and microprocessors.

The Lines
Unlike mary other object formats, the lines themselves are not especiallyisignif Theformat consits of
a rumber oftagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

End of file.

File header (optional).
Checksum.

Dummy checksum (ignored).
Address.

Data word.

End of data record.

Program identifier (optional).

(Bl n[n]

One byte of data. Thenis 8-bit big-endian hexadecimal.

End of File
[[CRUF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

XTWO©Ow~NO "

Data Byte

File Header

|0 | length | flename]

The optional start-of-file record begins with a tag character ('0’) and a 12-character file hbadest
four characters are the byte count of the file data. The remaining 8 characters are the name of the file and
may be ap ASCII characters, blank padded.

Checksum

(7 n][n[n]n

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7jinfihes 16-bit big-endian hexadecimal.

Reference Manual SRecord 138

srec_ti_tagged(5) srec_ti_tagged(5)

Dummy Checksum

[(8[n]n[n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8jnfihes 16-bit big-endian hexadecimal.

Address

[9[n[n[n]n]

Addresses may bewgn for ary data byte, but none is mandatofjhe file begins at 0000 if no address is
given before the first datadld. Thennnnis 16-bit big-endian hexadecimal.

Data Word

[(Blala[b]b]

Two bytes of data. Thaaandbbare each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag. The checksum is
reset to zero at this point.

Program ldentifier

[(Kn[n[n]n] ed

The program identifier can contain a brief description of the program, or can be eeiy ¢ext portion
is optional). Thennnnlength (hex) of the field includes the ‘K’, the length and the text; it is at least 5.
Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.
EXAMPLE

Here is an example TI-Taggeitef It contains the data “Hello, World[rq] to be loaded at address 0x0100.
K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0A7F648F

and here is another example from the reference below
00050 7FDD4F
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF
90030BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FDF
90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FCF

SEE ALSO
http://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-33)
COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licens&ommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat —VERSion Licenseommand.

Reference Manual SRecord 139

srec_ti_tagged(5) srec_ti_tagged(5)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 140

srec_ti_txt(5) srec_ti_txt(5)

NAME
srec_ti_txt — Bxas Instruments ti-txt (MSP430) file format

DESCRIPTION
The ti-TXT format is used by theeXas Instruments MSP430 familty programming adapter.

The TI-TXT he format supports 16-bit hexadecimal data. It consists of one or more sections, followed by
the end-of-file indicator.

Each section consistes of an at (@) sign followexkaution start address (in hexadecimal), and newline,
and then data bytes (inxtsdlecimal). Thesection address is followed by ani@e. Thereare to be 16
data bytes per line, except for the last line in a section.

The end-of-file indicator is the lettgrfollowed by a ne/lline. Theend-of-file indicator mandatory.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.
EXAMPLE
Here is an example ti-txt file taken from the reference below:
@F000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFFE

00 FO

g

SEE ALSO
http://www.ti.com/lit/pdf/slau101, section A.Note: the portion which says addresses mustvea,eand
the number of data bytes in a section mustJea,ds wrong.

COPYRIGHT
srec_ti_txtversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

Thesrec_ti_txtprogram comes with ABSOLUTEL.NO WARRANTY; for details use thestec_ti_txt
-VERSion Licens&eommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_ti_txt -VERSIion Licenseommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 141

srec_trs80(5)

NAME

srec_trs80(5)

srec_trs80 — Radio Shack TRS-80 object file format specification

DESCRIPTION

This document describes the binary object file format for the Z80-based Radio Shack TRS-80
microcomputers, such as the Model |, Il, I, 4, 4D, and Bie binary format is generated by the disk-
based Assembler/Editaand used for TRS-DOS program files.

The object file is blocked into records, each of which contains the record type, length, and payload data.

For Data

and End of File records, the payload starts withbites of address in little-endian format.

There are four main types of records that arenddf Therecord types are:

» Data Record

* End of File Record with Execution Transfer

» End of File Record without Execution Transfer

e Comment

» Start Linear Address Record (32-bit format only)

General Record Format

Record
Type

Record | Load Data
Length | Address

Record Type.

Each record begins with a single byte Record Type field which specifies the record type of this
record. TheRecord Type field is used to interpret the remaining information within the record.
This field is one byte, represented as texadecimal characters. The encoding for all the
current record types are:

1 Data Record

2 End of File Record with Execution Transfer

3 End of File Record without Execution Transfer
5 Comment Record

Record Length

Address

Data

Each record has a single byte Record Length field which specifies the number of bytes of
information or data which follows the Record Length field of the record. The maximum value of
the Record Length field is hexadecimal “FF” or 255. In the case of Data RecorgdRexdyd

Length byte values of zero todvere considered to be lengths of 256 to 258, respbgti

Data and End recordvéa two-byte Address field in little-endian byte ordétor Data records,
this is the starting address at which to load the remaining payload of the record. In End records,
this is the address for the start géeution of the file, or zero if not applicable.

Each record has a variable length Data field, it consists of zero or more bytes. The interpretation
of this field depends on the Record Type field.

Reference Manual SRecord 142

srec_trs80(5) srec_trs80(5)

REFERENCE
This information comes from the "Program Files" sectioNnREDOS-1I Reference Manuagndy
Corporation, 1982.

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 143

srec_vmem(5) srec_vmem(5)

NAME
srec_vmem — vmem file format

DESCRIPTION
This format is the Verilog VMEM format. This is axhormat suitable for loading into Verilog simulations
using thebreadmemh call.

The text file to be read shall contain only the following:
White space (spaces,wménes, tabs, and form-feeds)
Comments (both types of C++ comment are allowed)
Hexadecimal numbers

White space and/or comments shall be used to separate the numbers.
In the following discussion, the term "address" refers to arximde the array that models the memory.

As the file is read, each number encountered is assigned to a sieceesdielement of the memory.
Addressing is controlled both by specifying start and/or finish addresses in the systewotziomand
by specifying addresses in the data file.

When addresses appear in the data file, the format is an "at" cha@dtdlo(ved by a hexadecimal
number as follows:
@hh...h

Both uppercase and lowercase digits are allowed in the nurNberhite space is allowed between t@e
and the numberAs mary address specifications as needed within the data file can be used. When the
system task encounters an address specification, it loads subsequent data starting at that memory address.

Commentary
There is no checksum in this format, which can generate falsevpositien guessing file formats on
input.

There is no indication of the word size in the file, since it is dependent on the word type of the Verilog
memory it is being read into. SRecord will guess the word size based on the number of digits it sees in the
numbers, but this is only a guess.

SRecord will also assume that the numbers are to be loaded big-endian; that is, most significant byte (first
byte seen) into the lowest addresgezed by the word.

You can use the-byte-swapfilter to change the byte order; it takes an optional width of bytes to swap
within.

Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times (32-bit), 3.1 times (16-bit) or 3.6
times (8-bit) when represented with this format.

EXAMPLE
Here is an example Verilog VMEMI€. It contains the data “Hello, World[rqg] to be loaded at address
0x1000.
@00000400 48656C6C 6F2C2057 6F726C64 OAFFFFFF
REFERENCE

IEEE P1364-2005/D2, Standard for Verilog Hardware Description Language (Draft), section 17.2.8
"Loading memory data from a file", p. 295.

Copyright © 2003 IEEE

http://www.boyd.com/1364/

http://www.boyd.com/1364/1364-2005-d2.pdf.gz

Reference Manual SRecord 144

srec_vmem(5) srec_vmem(5)

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 145

srec_wilson(5) srec_wilson(5)

NAME
srec_wilson — wilson file format

DESCRIPTION
This is a mystery format, added to support a mysery EPROM loader used by Alan Wilson
<dvdsales@dvdlibrary.co.uk>

If you know the true name of this format, please let mewknt bears a remarkable similarity to the
Motorola S-Record format, hower | can find no reference to a "compressed" Motorola format.

The Lines
Each line contains normal ASCII characters, and “high bit on[rq] characters, but the ASCII control
characters arevaided (the high-bit-on con characters are noided). Normaline termination characters
(CRLF or LF, depending on your system) are used.

The presence of high-bit-on characters makes this format unattractend via email, as it must be
wrapped as a binary attachment, increasing its size.

In general, a single byte per byte is used to encode valuesydn@ame values use mbytes, according to
the following table:

Byte Value Encodingl or 2 chars)

0x00 .. Ox9F 0x40 .. OxDF

OxAO .. OXAF Ox3A 0x30 .. 0x3A 0x3F
0xBO .. OXBF 0x3B 0x30 .. 0x3B 0x3F
0xCO .. OXCF ~ 0x3C 0x30 .. 0x3C 0x3F
0xDO .. OXDF 0x3D 0x30 .. 0x3D 0x3F
OXEO .. OxFF OXxEO .. OxFF

The rest of this description, when refering to “bytes[rq] means byte values encoded usingehatddo

The Fields

Each line consists of 5 fields. These are the type field, length field, address field, data field, and the
checksum.

| Type | Record Length| Address| Data] Checksum

Type The type field is a 1 character field that specifies whether the record is data (0x43), or termination
(0x47).

Record Length
The record length field is a 1 byte field that specifies the number of bytes in the record, excluding
the type and record length fields.

Address This is a 4-byte address that specifies where the data is to be loaded into memaory.

Data The data field contains theeeutable code, memory-loadable data or desedptiformation to
be transferred.

Checksum
The checksum is an 1-byte field that represents the least significant byte of theoomEément
of the sum of the values represented by the bytes making up the length, address, and data fields.

Reference Manual SRecord 146

srec_wilson(5) srec_wilson(5)

Record Types
0x43 (#) A record containing data and the 4-byte address at which the data is to reside.

0x47 () Atermination record. The address field may contain the 4-byte address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 1.5 times when represented with this format.

COPYRIGHT
srec_catversion 1.62
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licens&ommand. Thigs free software and you are welcome to redistribute it under certain
conditions; for details use theréc_cat —VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 147

srec_wilson(5) srec_wilson(5)

Reference Manual SRecord 1000

