source: uKadecot/trunk/uip/uip/uip.h@ 108

Last change on this file since 108 was 108, checked in by coas-nagasima, 9 years ago

MIMEプロパティの変更

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
  • Property svn:mime-type set to text/x-chdr; charset=SHIFT_JIS
File size: 44.7 KB
RevLine 
[101]1
2/**
3 * \addtogroup uip
4 * @{
5 */
6
7/**
8 * \file
9 * Header file for the uIP TCP/IP stack.
10 * \author Adam Dunkels <adam@dunkels.com>
11 *
12 * The uIP TCP/IP stack header file contains definitions for a number
13 * of C macros that are used by uIP programs as well as internal uIP
14 * structures, TCP/IP header structures and function declarations.
15 *
16 */
17
18
19/*
20 * Copyright (c) 2001-2003, Adam Dunkels.
21 * All rights reserved.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. The name of the author may not be used to endorse or promote
32 * products derived from this software without specific prior
33 * written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
36 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
37 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
39 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
41 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
42 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
43 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
44 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
45 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46 *
47 * This file is part of the uIP TCP/IP stack.
48 *
49 * $Id: uip.h 108 2015-06-11 09:15:46Z coas-nagasima $
50 *
51 */
52
53#ifndef __UIP_H__
54#define __UIP_H__
55
56#include "uipopt.h"
57
58/**
59 * Repressentation of an IP address.
60 *
61 */
62typedef u16_t uip_ip4addr_t[2];
63typedef u16_t uip_ip6addr_t[8];
64#if UIP_CONF_IPV6
65typedef uip_ip6addr_t uip_ipaddr_t;
66#else /* UIP_CONF_IPV6 */
67typedef uip_ip4addr_t uip_ipaddr_t;
68#endif /* UIP_CONF_IPV6 */
69
70/*---------------------------------------------------------------------------*/
71/* First, the functions that should be called from the
72 * system. Initialization, the periodic timer and incoming packets are
73 * handled by the following three functions.
74 */
75
76/**
77 * \defgroup uipconffunc uIP configuration functions
78 * @{
79 *
80 * The uIP configuration functions are used for setting run-time
81 * parameters in uIP such as IP addresses.
82 */
83
84/**
85 * Set the IP address of this host.
86 *
87 * The IP address is represented as a 4-byte array where the first
88 * octet of the IP address is put in the first member of the 4-byte
89 * array.
90 *
91 * Example:
92 \code
93
94 uip_ipaddr_t addr;
95
96 uip_ipaddr(&addr, 192,168,1,2);
97 uip_sethostaddr(&addr);
98
99 \endcode
100 * \param addr A pointer to an IP address of type uip_ipaddr_t;
101 *
102 * \sa uip_ipaddr()
103 *
104 * \hideinitializer
105 */
106#define uip_sethostaddr(addr) uip_ipaddr_copy(uip_hostaddr, (addr))
107
108/**
109 * Get the IP address of this host.
110 *
111 * The IP address is represented as a 4-byte array where the first
112 * octet of the IP address is put in the first member of the 4-byte
113 * array.
114 *
115 * Example:
116 \code
117 uip_ipaddr_t hostaddr;
118
119 uip_gethostaddr(&hostaddr);
120 \endcode
121 * \param addr A pointer to a uip_ipaddr_t variable that will be
122 * filled in with the currently configured IP address.
123 *
124 * \hideinitializer
125 */
126#define uip_gethostaddr(addr) uip_ipaddr_copy((addr), uip_hostaddr)
127
128/**
129 * Set the default router's IP address.
130 *
131 * \param addr A pointer to a uip_ipaddr_t variable containing the IP
132 * address of the default router.
133 *
134 * \sa uip_ipaddr()
135 *
136 * \hideinitializer
137 */
138#define uip_setdraddr(addr) uip_ipaddr_copy(uip_draddr, (addr))
139
140/**
141 * Set the netmask.
142 *
143 * \param addr A pointer to a uip_ipaddr_t variable containing the IP
144 * address of the netmask.
145 *
146 * \sa uip_ipaddr()
147 *
148 * \hideinitializer
149 */
150#define uip_setnetmask(addr) uip_ipaddr_copy(uip_netmask, (addr))
151
152
153/**
154 * Get the default router's IP address.
155 *
156 * \param addr A pointer to a uip_ipaddr_t variable that will be
157 * filled in with the IP address of the default router.
158 *
159 * \hideinitializer
160 */
161#define uip_getdraddr(addr) uip_ipaddr_copy((addr), uip_draddr)
162
163/**
164 * Get the netmask.
165 *
166 * \param addr A pointer to a uip_ipaddr_t variable that will be
167 * filled in with the value of the netmask.
168 *
169 * \hideinitializer
170 */
171#define uip_getnetmask(addr) uip_ipaddr_copy((addr), uip_netmask)
172
173/** @} */
174
175/**
176 * \defgroup uipinit uIP initialization functions
177 * @{
178 *
179 * The uIP initialization functions are used for booting uIP.
180 */
181
182/**
183 * uIP initialization function.
184 *
185 * This function should be called at boot up to initilize the uIP
186 * TCP/IP stack.
187 */
188void uip_init(void);
189
190/**
191 * uIP initialization function.
192 *
193 * This function may be used at boot time to set the initial ip_id.
194 */
195void uip_setipid(u16_t id);
196
197/** @} */
198
199/**
200 * \defgroup uipdevfunc uIP device driver functions
201 * @{
202 *
203 * These functions are used by a network device driver for interacting
204 * with uIP.
205 */
206
207/**
208 * Process an incoming packet.
209 *
210 * This function should be called when the device driver has received
211 * a packet from the network. The packet from the device driver must
212 * be present in the uip_buf buffer, and the length of the packet
213 * should be placed in the uip_len variable.
214 *
215 * When the function returns, there may be an outbound packet placed
216 * in the uip_buf packet buffer. If so, the uip_len variable is set to
217 * the length of the packet. If no packet is to be sent out, the
218 * uip_len variable is set to 0.
219 *
220 * The usual way of calling the function is presented by the source
221 * code below.
222 \code
223 uip_len = devicedriver_poll();
224 if(uip_len > 0) {
225 uip_input();
226 if(uip_len > 0) {
227 devicedriver_send();
228 }
229 }
230 \endcode
231 *
232 * \note If you are writing a uIP device driver that needs ARP
233 * (Address Resolution Protocol), e.g., when running uIP over
234 * Ethernet, you will need to call the uIP ARP code before calling
235 * this function:
236 \code
237 #define BUF ((struct uip_eth_hdr *)&uip_buf[0])
238 uip_len = ethernet_devicedrver_poll();
239 if(uip_len > 0) {
240 if(BUF->type == HTONS(UIP_ETHTYPE_IP)) {
241 uip_arp_ipin();
242 uip_input();
243 if(uip_len > 0) {
244 uip_arp_out();
245 ethernet_devicedriver_send();
246 }
247 } else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) {
248 uip_arp_arpin();
249 if(uip_len > 0) {
250 ethernet_devicedriver_send();
251 }
252 }
253 \endcode
254 *
255 * \hideinitializer
256 */
257#define uip_input() uip_process(UIP_DATA)
258
259/**
260 * Periodic processing for a connection identified by its number.
261 *
262 * This function does the necessary periodic processing (timers,
263 * polling) for a uIP TCP conneciton, and should be called when the
264 * periodic uIP timer goes off. It should be called for every
265 * connection, regardless of whether they are open of closed.
266 *
267 * When the function returns, it may have an outbound packet waiting
268 * for service in the uIP packet buffer, and if so the uip_len
269 * variable is set to a value larger than zero. The device driver
270 * should be called to send out the packet.
271 *
272 * The ususal way of calling the function is through a for() loop like
273 * this:
274 \code
275 for(i = 0; i < UIP_CONNS; ++i) {
276 uip_periodic(i);
277 if(uip_len > 0) {
278 devicedriver_send();
279 }
280 }
281 \endcode
282 *
283 * \note If you are writing a uIP device driver that needs ARP
284 * (Address Resolution Protocol), e.g., when running uIP over
285 * Ethernet, you will need to call the uip_arp_out() function before
286 * calling the device driver:
287 \code
288 for(i = 0; i < UIP_CONNS; ++i) {
289 uip_periodic(i);
290 if(uip_len > 0) {
291 uip_arp_out();
292 ethernet_devicedriver_send();
293 }
294 }
295 \endcode
296 *
297 * \param conn The number of the connection which is to be periodically polled.
298 *
299 * \hideinitializer
300 */
301#define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \
302 uip_process(UIP_TIMER); } while (0)
303
304/**
305 *
306 *
307 */
308#define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED)
309
310/**
311 * Perform periodic processing for a connection identified by a pointer
312 * to its structure.
313 *
314 * Same as uip_periodic() but takes a pointer to the actual uip_conn
315 * struct instead of an integer as its argument. This function can be
316 * used to force periodic processing of a specific connection.
317 *
318 * \param conn A pointer to the uip_conn struct for the connection to
319 * be processed.
320 *
321 * \hideinitializer
322 */
323#define uip_periodic_conn(conn) do { uip_conn = conn; \
324 uip_process(UIP_TIMER); } while (0)
325
326/**
327 * Reuqest that a particular connection should be polled.
328 *
329 * Similar to uip_periodic_conn() but does not perform any timer
330 * processing. The application is polled for new data.
331 *
332 * \param conn A pointer to the uip_conn struct for the connection to
333 * be processed.
334 *
335 * \hideinitializer
336 */
337#define uip_poll_conn(conn) do { uip_conn = conn; \
338 uip_process(UIP_POLL_REQUEST); } while (0)
339
340
341#if UIP_UDP
342/**
343 * Periodic processing for a UDP connection identified by its number.
344 *
345 * This function is essentially the same as uip_periodic(), but for
346 * UDP connections. It is called in a similar fashion as the
347 * uip_periodic() function:
348 \code
349 for(i = 0; i < UIP_UDP_CONNS; i++) {
350 uip_udp_periodic(i);
351 if(uip_len > 0) {
352 devicedriver_send();
353 }
354 }
355 \endcode
356 *
357 * \note As for the uip_periodic() function, special care has to be
358 * taken when using uIP together with ARP and Ethernet:
359 \code
360 for(i = 0; i < UIP_UDP_CONNS; i++) {
361 uip_udp_periodic(i);
362 if(uip_len > 0) {
363 uip_arp_out();
364 ethernet_devicedriver_send();
365 }
366 }
367 \endcode
368 *
369 * \param conn The number of the UDP connection to be processed.
370 *
371 * \hideinitializer
372 */
373#define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \
374 uip_process(UIP_UDP_TIMER); } while (0)
375
376/**
377 * Periodic processing for a UDP connection identified by a pointer to
378 * its structure.
379 *
380 * Same as uip_udp_periodic() but takes a pointer to the actual
381 * uip_conn struct instead of an integer as its argument. This
382 * function can be used to force periodic processing of a specific
383 * connection.
384 *
385 * \param conn A pointer to the uip_udp_conn struct for the connection
386 * to be processed.
387 *
388 * \hideinitializer
389 */
390#define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \
391 uip_process(UIP_UDP_TIMER); } while (0)
392
393
394#endif /* UIP_UDP */
395
396/**
397 * The uIP packet buffer.
398 *
399 * The uip_buf array is used to hold incoming and outgoing
400 * packets. The device driver should place incoming data into this
401 * buffer. When sending data, the device driver should read the link
402 * level headers and the TCP/IP headers from this buffer. The size of
403 * the link level headers is configured by the UIP_LLH_LEN define.
404 *
405 * \note The application data need not be placed in this buffer, so
406 * the device driver must read it from the place pointed to by the
407 * uip_appdata pointer as illustrated by the following example:
408 \code
409 void
410 devicedriver_send(void)
411 {
412 hwsend(&uip_buf[0], UIP_LLH_LEN);
413 if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {
414 hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
415 } else {
416 hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
417 hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);
418 }
419 }
420 \endcode
421 */
422#if 0
423extern u8_t uip_buf[UIP_BUFSIZE+2];
424#else
425extern u8_t *uip_buf;
426#endif
427
428/** @} */
429
430/*---------------------------------------------------------------------------*/
431/* Functions that are used by the uIP application program. Opening and
432 * closing connections, sending and receiving data, etc. is all
433 * handled by the functions below.
434*/
435/**
436 * \defgroup uipappfunc uIP application functions
437 * @{
438 *
439 * Functions used by an application running of top of uIP.
440 */
441
442/**
443 * Start listening to the specified port.
444 *
445 * \note Since this function expects the port number in network byte
446 * order, a conversion using HTONS() or htons() is necessary.
447 *
448 \code
449 uip_listen(HTONS(80));
450 \endcode
451 *
452 * \param port A 16-bit port number in network byte order.
453 */
454void uip_listen(u16_t port);
455
456/**
457 * Stop listening to the specified port.
458 *
459 * \note Since this function expects the port number in network byte
460 * order, a conversion using HTONS() or htons() is necessary.
461 *
462 \code
463 uip_unlisten(HTONS(80));
464 \endcode
465 *
466 * \param port A 16-bit port number in network byte order.
467 */
468void uip_unlisten(u16_t port);
469
470/**
471 * Connect to a remote host using TCP.
472 *
473 * This function is used to start a new connection to the specified
474 * port on the specied host. It allocates a new connection identifier,
475 * sets the connection to the SYN_SENT state and sets the
476 * retransmission timer to 0. This will cause a TCP SYN segment to be
477 * sent out the next time this connection is periodically processed,
478 * which usually is done within 0.5 seconds after the call to
479 * uip_connect().
480 *
481 * \note This function is avaliable only if support for active open
482 * has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h.
483 *
484 * \note Since this function requires the port number to be in network
485 * byte order, a conversion using HTONS() or htons() is necessary.
486 *
487 \code
488 uip_ipaddr_t ipaddr;
489
490 uip_ipaddr(&ipaddr, 192,168,1,2);
491 uip_connect(&ipaddr, HTONS(80));
492 \endcode
493 *
494 * \param ripaddr The IP address of the remote hot.
495 *
496 * \param port A 16-bit port number in network byte order.
497 *
498 * \return A pointer to the uIP connection identifier for the new connection,
499 * or NULL if no connection could be allocated.
500 *
501 */
502struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, u16_t port);
503
504
505
506/**
507 * \internal
508 *
509 * Check if a connection has outstanding (i.e., unacknowledged) data.
510 *
511 * \param conn A pointer to the uip_conn structure for the connection.
512 *
513 * \hideinitializer
514 */
515#define uip_outstanding(conn) ((conn)->len)
516
517/**
518 * Send data on the current connection.
519 *
520 * This function is used to send out a single segment of TCP
521 * data. Only applications that have been invoked by uIP for event
522 * processing can send data.
523 *
524 * The amount of data that actually is sent out after a call to this
525 * funcion is determined by the maximum amount of data TCP allows. uIP
526 * will automatically crop the data so that only the appropriate
527 * amount of data is sent. The function uip_mss() can be used to query
528 * uIP for the amount of data that actually will be sent.
529 *
530 * \note This function does not guarantee that the sent data will
531 * arrive at the destination. If the data is lost in the network, the
532 * application will be invoked with the uip_rexmit() event being
533 * set. The application will then have to resend the data using this
534 * function.
535 *
536 * \param data A pointer to the data which is to be sent.
537 *
538 * \param len The maximum amount of data bytes to be sent.
539 *
540 * \hideinitializer
541 */
542void uip_send(const void *data, int len);
543
544/**
545 * The length of any incoming data that is currently avaliable (if avaliable)
546 * in the uip_appdata buffer.
547 *
548 * The test function uip_data() must first be used to check if there
549 * is any data available at all.
550 *
551 * \hideinitializer
552 */
553/*void uip_datalen(void);*/
554#define uip_datalen() uip_len
555
556/**
557 * The length of any out-of-band data (urgent data) that has arrived
558 * on the connection.
559 *
560 * \note The configuration parameter UIP_URGDATA must be set for this
561 * function to be enabled.
562 *
563 * \hideinitializer
564 */
565#define uip_urgdatalen() uip_urglen
566
567/**
568 * Close the current connection.
569 *
570 * This function will close the current connection in a nice way.
571 *
572 * \hideinitializer
573 */
574#define uip_close() (uip_flags = UIP_CLOSE)
575
576/**
577 * Abort the current connection.
578 *
579 * This function will abort (reset) the current connection, and is
580 * usually used when an error has occured that prevents using the
581 * uip_close() function.
582 *
583 * \hideinitializer
584 */
585#define uip_abort() (uip_flags = UIP_ABORT)
586
587/**
588 * Tell the sending host to stop sending data.
589 *
590 * This function will close our receiver's window so that we stop
591 * receiving data for the current connection.
592 *
593 * \hideinitializer
594 */
595#define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED)
596
597/**
598 * Find out if the current connection has been previously stopped with
599 * uip_stop().
600 *
601 * \hideinitializer
602 */
603#define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED)
604
605/**
606 * Restart the current connection, if is has previously been stopped
607 * with uip_stop().
608 *
609 * This function will open the receiver's window again so that we
610 * start receiving data for the current connection.
611 *
612 * \hideinitializer
613 */
614#define uip_restart() do { uip_flags |= UIP_NEWDATA; \
615 uip_conn->tcpstateflags &= ~UIP_STOPPED; \
616 } while(0)
617
618
619/* uIP tests that can be made to determine in what state the current
620 connection is, and what the application function should do. */
621
622/**
623 * Is the current connection a UDP connection?
624 *
625 * This function checks whether the current connection is a UDP connection.
626 *
627 * \hideinitializer
628 *
629 */
630#define uip_udpconnection() (uip_conn == NULL)
631
632/**
633 * Is new incoming data available?
634 *
635 * Will reduce to non-zero if there is new data for the application
636 * present at the uip_appdata pointer. The size of the data is
637 * avaliable through the uip_len variable.
638 *
639 * \hideinitializer
640 */
641#define uip_newdata() (uip_flags & UIP_NEWDATA)
642
643/**
644 * Has previously sent data been acknowledged?
645 *
646 * Will reduce to non-zero if the previously sent data has been
647 * acknowledged by the remote host. This means that the application
648 * can send new data.
649 *
650 * \hideinitializer
651 */
652#define uip_acked() (uip_flags & UIP_ACKDATA)
653
654/**
655 * Has the connection just been connected?
656 *
657 * Reduces to non-zero if the current connection has been connected to
658 * a remote host. This will happen both if the connection has been
659 * actively opened (with uip_connect()) or passively opened (with
660 * uip_listen()).
661 *
662 * \hideinitializer
663 */
664#define uip_connected() (uip_flags & UIP_CONNECTED)
665
666/**
667 * Has the connection been closed by the other end?
668 *
669 * Is non-zero if the connection has been closed by the remote
670 * host. The application may then do the necessary clean-ups.
671 *
672 * \hideinitializer
673 */
674#define uip_closed() (uip_flags & UIP_CLOSE)
675
676/**
677 * Has the connection been aborted by the other end?
678 *
679 * Non-zero if the current connection has been aborted (reset) by the
680 * remote host.
681 *
682 * \hideinitializer
683 */
684#define uip_aborted() (uip_flags & UIP_ABORT)
685
686/**
687 * Has the connection timed out?
688 *
689 * Non-zero if the current connection has been aborted due to too many
690 * retransmissions.
691 *
692 * \hideinitializer
693 */
694#define uip_timedout() (uip_flags & UIP_TIMEDOUT)
695
696/**
697 * Do we need to retransmit previously data?
698 *
699 * Reduces to non-zero if the previously sent data has been lost in
700 * the network, and the application should retransmit it. The
701 * application should send the exact same data as it did the last
702 * time, using the uip_send() function.
703 *
704 * \hideinitializer
705 */
706#define uip_rexmit() (uip_flags & UIP_REXMIT)
707
708/**
709 * Is the connection being polled by uIP?
710 *
711 * Is non-zero if the reason the application is invoked is that the
712 * current connection has been idle for a while and should be
713 * polled.
714 *
715 * The polling event can be used for sending data without having to
716 * wait for the remote host to send data.
717 *
718 * \hideinitializer
719 */
720#define uip_poll() (uip_flags & UIP_POLL)
721
722/**
723 * Get the initial maxium segment size (MSS) of the current
724 * connection.
725 *
726 * \hideinitializer
727 */
728#define uip_initialmss() (uip_conn->initialmss)
729
730/**
731 * Get the current maxium segment size that can be sent on the current
732 * connection.
733 *
734 * The current maxiumum segment size that can be sent on the
735 * connection is computed from the receiver's window and the MSS of
736 * the connection (which also is available by calling
737 * uip_initialmss()).
738 *
739 * \hideinitializer
740 */
741#define uip_mss() (uip_conn->mss)
742
743/**
744 * Set up a new UDP connection.
745 *
746 * This function sets up a new UDP connection. The function will
747 * automatically allocate an unused local port for the new
748 * connection. However, another port can be chosen by using the
749 * uip_udp_bind() call, after the uip_udp_new() function has been
750 * called.
751 *
752 * Example:
753 \code
754 uip_ipaddr_t addr;
755 struct uip_udp_conn *c;
756
757 uip_ipaddr(&addr, 192,168,2,1);
758 c = uip_udp_new(&addr, HTONS(12345));
759 if(c != NULL) {
760 uip_udp_bind(c, HTONS(12344));
761 }
762 \endcode
763 * \param ripaddr The IP address of the remote host.
764 *
765 * \param rport The remote port number in network byte order.
766 *
767 * \return The uip_udp_conn structure for the new connection or NULL
768 * if no connection could be allocated.
769 */
770struct uip_udp_conn *uip_udp_new(uip_ipaddr_t *ripaddr, u16_t rport);
771
772/**
773 * Removed a UDP connection.
774 *
775 * \param conn A pointer to the uip_udp_conn structure for the connection.
776 *
777 * \hideinitializer
778 */
779#define uip_udp_remove(conn) (conn)->lport = 0
780
781/**
782 * Bind a UDP connection to a local port.
783 *
784 * \param conn A pointer to the uip_udp_conn structure for the
785 * connection.
786 *
787 * \param port The local port number, in network byte order.
788 *
789 * \hideinitializer
790 */
791#define uip_udp_bind(conn, port) (conn)->lport = port
792
793/**
794 * Send a UDP datagram of length len on the current connection.
795 *
796 * This function can only be called in response to a UDP event (poll
797 * or newdata). The data must be present in the uip_buf buffer, at the
798 * place pointed to by the uip_appdata pointer.
799 *
800 * \param len The length of the data in the uip_buf buffer.
801 *
802 * \hideinitializer
803 */
804#define uip_udp_send(len) uip_send((char *)uip_appdata, len)
805
806/** @} */
807
808/* uIP convenience and converting functions. */
809
810/**
811 * \defgroup uipconvfunc uIP conversion functions
812 * @{
813 *
814 * These functions can be used for converting between different data
815 * formats used by uIP.
816 */
817
818/**
819 * Construct an IP address from four bytes.
820 *
821 * This function constructs an IP address of the type that uIP handles
822 * internally from four bytes. The function is handy for specifying IP
823 * addresses to use with e.g. the uip_connect() function.
824 *
825 * Example:
826 \code
827 uip_ipaddr_t ipaddr;
828 struct uip_conn *c;
829
830 uip_ipaddr(&ipaddr, 192,168,1,2);
831 c = uip_connect(&ipaddr, HTONS(80));
832 \endcode
833 *
834 * \param addr A pointer to a uip_ipaddr_t variable that will be
835 * filled in with the IP address.
836 *
837 * \param addr0 The first octet of the IP address.
838 * \param addr1 The second octet of the IP address.
839 * \param addr2 The third octet of the IP address.
840 * \param addr3 The forth octet of the IP address.
841 *
842 * \hideinitializer
843 */
844#define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \
845 ((u16_t *)(addr))[0] = HTONS(((addr0) << 8) | (addr1)); \
846 ((u16_t *)(addr))[1] = HTONS(((addr2) << 8) | (addr3)); \
847 } while(0)
848
849/**
850 * Construct an IPv6 address from eight 16-bit words.
851 *
852 * This function constructs an IPv6 address.
853 *
854 * \hideinitializer
855 */
856#define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \
857 ((u16_t *)(addr))[0] = HTONS((addr0)); \
858 ((u16_t *)(addr))[1] = HTONS((addr1)); \
859 ((u16_t *)(addr))[2] = HTONS((addr2)); \
860 ((u16_t *)(addr))[3] = HTONS((addr3)); \
861 ((u16_t *)(addr))[4] = HTONS((addr4)); \
862 ((u16_t *)(addr))[5] = HTONS((addr5)); \
863 ((u16_t *)(addr))[6] = HTONS((addr6)); \
864 ((u16_t *)(addr))[7] = HTONS((addr7)); \
865 } while(0)
866
867/**
868 * Copy an IP address to another IP address.
869 *
870 * Copies an IP address from one place to another.
871 *
872 * Example:
873 \code
874 uip_ipaddr_t ipaddr1, ipaddr2;
875
876 uip_ipaddr(&ipaddr1, 192,16,1,2);
877 uip_ipaddr_copy(&ipaddr2, &ipaddr1);
878 \endcode
879 *
880 * \param dest The destination for the copy.
881 * \param src The source from where to copy.
882 *
883 * \hideinitializer
884 */
885#if !UIP_CONF_IPV6
886#define uip_ipaddr_copy(dest, src) do { \
887 ((u16_t *)dest)[0] = ((u16_t *)src)[0]; \
888 ((u16_t *)dest)[1] = ((u16_t *)src)[1]; \
889 } while(0)
890#else /* !UIP_CONF_IPV6 */
891#define uip_ipaddr_copy(dest, src) memcpy(dest, src, sizeof(uip_ip6addr_t))
892#endif /* !UIP_CONF_IPV6 */
893
894/**
895 * Compare two IP addresses
896 *
897 * Compares two IP addresses.
898 *
899 * Example:
900 \code
901 uip_ipaddr_t ipaddr1, ipaddr2;
902
903 uip_ipaddr(&ipaddr1, 192,16,1,2);
904 if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) {
905 printf("They are the same");
906 }
907 \endcode
908 *
909 * \param addr1 The first IP address.
910 * \param addr2 The second IP address.
911 *
912 * \hideinitializer
913 */
914#if !UIP_CONF_IPV6
915#define uip_ipaddr_cmp(addr1, addr2) (((u16_t *)addr1)[0] == ((u16_t *)addr2)[0] && \
916 ((u16_t *)addr1)[1] == ((u16_t *)addr2)[1])
917#else /* !UIP_CONF_IPV6 */
918#define uip_ipaddr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0)
919#endif /* !UIP_CONF_IPV6 */
920
921/**
922 * Compare two IP addresses with netmasks
923 *
924 * Compares two IP addresses with netmasks. The masks are used to mask
925 * out the bits that are to be compared.
926 *
927 * Example:
928 \code
929 uip_ipaddr_t ipaddr1, ipaddr2, mask;
930
931 uip_ipaddr(&mask, 255,255,255,0);
932 uip_ipaddr(&ipaddr1, 192,16,1,2);
933 uip_ipaddr(&ipaddr2, 192,16,1,3);
934 if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) {
935 printf("They are the same");
936 }
937 \endcode
938 *
939 * \param addr1 The first IP address.
940 * \param addr2 The second IP address.
941 * \param mask The netmask.
942 *
943 * \hideinitializer
944 */
945#define uip_ipaddr_maskcmp(addr1, addr2, mask) \
946 (((((u16_t *)addr1)[0] & ((u16_t *)mask)[0]) == \
947 (((u16_t *)addr2)[0] & ((u16_t *)mask)[0])) && \
948 ((((u16_t *)addr1)[1] & ((u16_t *)mask)[1]) == \
949 (((u16_t *)addr2)[1] & ((u16_t *)mask)[1])))
950
951
952/**
953 * Mask out the network part of an IP address.
954 *
955 * Masks out the network part of an IP address, given the address and
956 * the netmask.
957 *
958 * Example:
959 \code
960 uip_ipaddr_t ipaddr1, ipaddr2, netmask;
961
962 uip_ipaddr(&ipaddr1, 192,16,1,2);
963 uip_ipaddr(&netmask, 255,255,255,0);
964 uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask);
965 \endcode
966 *
967 * In the example above, the variable "ipaddr2" will contain the IP
968 * address 192.168.1.0.
969 *
970 * \param dest Where the result is to be placed.
971 * \param src The IP address.
972 * \param mask The netmask.
973 *
974 * \hideinitializer
975 */
976#define uip_ipaddr_mask(dest, src, mask) do { \
977 ((u16_t *)dest)[0] = ((u16_t *)src)[0] & ((u16_t *)mask)[0]; \
978 ((u16_t *)dest)[1] = ((u16_t *)src)[1] & ((u16_t *)mask)[1]; \
979 } while(0)
980
981/**
982 * Pick the first octet of an IP address.
983 *
984 * Picks out the first octet of an IP address.
985 *
986 * Example:
987 \code
988 uip_ipaddr_t ipaddr;
989 u8_t octet;
990
991 uip_ipaddr(&ipaddr, 1,2,3,4);
992 octet = uip_ipaddr1(&ipaddr);
993 \endcode
994 *
995 * In the example above, the variable "octet" will contain the value 1.
996 *
997 * \hideinitializer
998 */
999#define uip_ipaddr1(addr) (htons(((u16_t *)(addr))[0]) >> 8)
1000
1001/**
1002 * Pick the second octet of an IP address.
1003 *
1004 * Picks out the second octet of an IP address.
1005 *
1006 * Example:
1007 \code
1008 uip_ipaddr_t ipaddr;
1009 u8_t octet;
1010
1011 uip_ipaddr(&ipaddr, 1,2,3,4);
1012 octet = uip_ipaddr2(&ipaddr);
1013 \endcode
1014 *
1015 * In the example above, the variable "octet" will contain the value 2.
1016 *
1017 * \hideinitializer
1018 */
1019#define uip_ipaddr2(addr) (htons(((u16_t *)(addr))[0]) & 0xff)
1020
1021/**
1022 * Pick the third octet of an IP address.
1023 *
1024 * Picks out the third octet of an IP address.
1025 *
1026 * Example:
1027 \code
1028 uip_ipaddr_t ipaddr;
1029 u8_t octet;
1030
1031 uip_ipaddr(&ipaddr, 1,2,3,4);
1032 octet = uip_ipaddr3(&ipaddr);
1033 \endcode
1034 *
1035 * In the example above, the variable "octet" will contain the value 3.
1036 *
1037 * \hideinitializer
1038 */
1039#define uip_ipaddr3(addr) (htons(((u16_t *)(addr))[1]) >> 8)
1040
1041/**
1042 * Pick the fourth octet of an IP address.
1043 *
1044 * Picks out the fourth octet of an IP address.
1045 *
1046 * Example:
1047 \code
1048 uip_ipaddr_t ipaddr;
1049 u8_t octet;
1050
1051 uip_ipaddr(&ipaddr, 1,2,3,4);
1052 octet = uip_ipaddr4(&ipaddr);
1053 \endcode
1054 *
1055 * In the example above, the variable "octet" will contain the value 4.
1056 *
1057 * \hideinitializer
1058 */
1059#define uip_ipaddr4(addr) (htons(((u16_t *)(addr))[1]) & 0xff)
1060
1061/**
1062 * Convert 16-bit quantity from host byte order to network byte order.
1063 *
1064 * This macro is primarily used for converting constants from host
1065 * byte order to network byte order. For converting variables to
1066 * network byte order, use the htons() function instead.
1067 *
1068 * \hideinitializer
1069 */
1070#ifndef HTONS
1071# if UIP_BYTE_ORDER == UIP_BIG_ENDIAN
1072# define HTONS(n) (n)
1073# else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
1074# define HTONS(n) (u16_t)((((u16_t) (n)) << 8) | (((u16_t) (n)) >> 8))
1075# endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
1076#else
1077#error "HTONS already defined!"
1078#endif /* HTONS */
1079
1080/**
1081 * Convert 16-bit quantity from host byte order to network byte order.
1082 *
1083 * This function is primarily used for converting variables from host
1084 * byte order to network byte order. For converting constants to
1085 * network byte order, use the HTONS() macro instead.
1086 */
1087#ifndef htons
1088u16_t htons(u16_t val);
1089#endif /* htons */
1090#ifndef ntohs
1091#define ntohs htons
1092#endif
1093
1094/** @} */
1095
1096/**
1097 * Pointer to the application data in the packet buffer.
1098 *
1099 * This pointer points to the application data when the application is
1100 * called. If the application wishes to send data, the application may
1101 * use this space to write the data into before calling uip_send().
1102 */
1103extern void *uip_appdata;
1104
1105#if UIP_URGDATA > 0
1106/* u8_t *uip_urgdata:
1107 *
1108 * This pointer points to any urgent data that has been received. Only
1109 * present if compiled with support for urgent data (UIP_URGDATA).
1110 */
1111extern void *uip_urgdata;
1112#endif /* UIP_URGDATA > 0 */
1113
1114
1115/**
1116 * \defgroup uipdrivervars Variables used in uIP device drivers
1117 * @{
1118 *
1119 * uIP has a few global variables that are used in device drivers for
1120 * uIP.
1121 */
1122
1123/**
1124 * The length of the packet in the uip_buf buffer.
1125 *
1126 * The global variable uip_len holds the length of the packet in the
1127 * uip_buf buffer.
1128 *
1129 * When the network device driver calls the uIP input function,
1130 * uip_len should be set to the length of the packet in the uip_buf
1131 * buffer.
1132 *
1133 * When sending packets, the device driver should use the contents of
1134 * the uip_len variable to determine the length of the outgoing
1135 * packet.
1136 *
1137 */
1138extern u16_t uip_len;
1139
1140/** @} */
1141
1142#if UIP_URGDATA > 0
1143extern u16_t uip_urglen, uip_surglen;
1144#endif /* UIP_URGDATA > 0 */
1145
1146
1147/**
1148 * Representation of a uIP TCP connection.
1149 *
1150 * The uip_conn structure is used for identifying a connection. All
1151 * but one field in the structure are to be considered read-only by an
1152 * application. The only exception is the appstate field whos purpose
1153 * is to let the application store application-specific state (e.g.,
1154 * file pointers) for the connection. The type of this field is
1155 * configured in the "uipopt.h" header file.
1156 */
1157struct uip_conn {
1158 uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */
1159
1160 u16_t lport; /**< The local TCP port, in network byte order. */
1161 u16_t rport; /**< The local remote TCP port, in network byte
1162 order. */
1163
1164 u8_t rcv_nxt[4]; /**< The sequence number that we expect to
1165 receive next. */
1166 u8_t snd_nxt[4]; /**< The sequence number that was last sent by
1167 us. */
1168 u16_t len; /**< Length of the data that was previously sent. */
1169 u16_t mss; /**< Current maximum segment size for the
1170 connection. */
1171 u16_t initialmss; /**< Initial maximum segment size for the
1172 connection. */
1173 u8_t sa; /**< Retransmission time-out calculation state
1174 variable. */
1175 u8_t sv; /**< Retransmission time-out calculation state
1176 variable. */
1177 u8_t rto; /**< Retransmission time-out. */
1178 u8_t tcpstateflags; /**< TCP state and flags. */
1179 u8_t timer; /**< The retransmission timer. */
1180 u8_t nrtx; /**< The number of retransmissions for the last
1181 segment sent. */
1182
1183 /** The application state. */
1184 uip_tcp_appstate_t appstate;
1185};
1186
1187
1188/**
1189 * Pointer to the current TCP connection.
1190 *
1191 * The uip_conn pointer can be used to access the current TCP
1192 * connection.
1193 */
1194extern struct uip_conn *uip_conn;
1195/* The array containing all uIP connections. */
1196extern struct uip_conn uip_conns[UIP_CONNS];
1197/**
1198 * \addtogroup uiparch
1199 * @{
1200 */
1201
1202/**
1203 * 4-byte array used for the 32-bit sequence number calculations.
1204 */
1205extern u8_t uip_acc32[4];
1206
1207/** @} */
1208
1209
1210#if UIP_UDP
1211/**
1212 * Representation of a uIP UDP connection.
1213 */
1214struct uip_udp_conn {
1215 uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */
1216 u16_t lport; /**< The local port number in network byte order. */
1217 u16_t rport; /**< The remote port number in network byte order. */
1218 u8_t ttl; /**< Default time-to-live. */
1219
1220 /** The application state. */
1221 uip_udp_appstate_t appstate;
1222};
1223
1224/**
1225 * The current UDP connection.
1226 */
1227extern struct uip_udp_conn *uip_udp_conn;
1228extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
1229#endif /* UIP_UDP */
1230
1231/**
1232 * The structure holding the TCP/IP statistics that are gathered if
1233 * UIP_STATISTICS is set to 1.
1234 *
1235 */
1236struct uip_stats {
1237 struct {
1238 uip_stats_t drop; /**< Number of dropped packets at the IP
1239 layer. */
1240 uip_stats_t recv; /**< Number of received packets at the IP
1241 layer. */
1242 uip_stats_t sent; /**< Number of sent packets at the IP
1243 layer. */
1244 uip_stats_t vhlerr; /**< Number of packets dropped due to wrong
1245 IP version or header length. */
1246 uip_stats_t hblenerr; /**< Number of packets dropped due to wrong
1247 IP length, high byte. */
1248 uip_stats_t lblenerr; /**< Number of packets dropped due to wrong
1249 IP length, low byte. */
1250 uip_stats_t fragerr; /**< Number of packets dropped since they
1251 were IP fragments. */
1252 uip_stats_t chkerr; /**< Number of packets dropped due to IP
1253 checksum errors. */
1254 uip_stats_t protoerr; /**< Number of packets dropped since they
1255 were neither ICMP, UDP nor TCP. */
1256 } ip; /**< IP statistics. */
1257 struct {
1258 uip_stats_t drop; /**< Number of dropped ICMP packets. */
1259 uip_stats_t recv; /**< Number of received ICMP packets. */
1260 uip_stats_t sent; /**< Number of sent ICMP packets. */
1261 uip_stats_t typeerr; /**< Number of ICMP packets with a wrong
1262 type. */
1263 } icmp; /**< ICMP statistics. */
1264 struct {
1265 uip_stats_t drop; /**< Number of dropped TCP segments. */
1266 uip_stats_t recv; /**< Number of recived TCP segments. */
1267 uip_stats_t sent; /**< Number of sent TCP segments. */
1268 uip_stats_t chkerr; /**< Number of TCP segments with a bad
1269 checksum. */
1270 uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK
1271 number. */
1272 uip_stats_t rst; /**< Number of recevied TCP RST (reset) segments. */
1273 uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */
1274 uip_stats_t syndrop; /**< Number of dropped SYNs due to too few
1275 connections was avaliable. */
1276 uip_stats_t synrst; /**< Number of SYNs for closed ports,
1277 triggering a RST. */
1278 } tcp; /**< TCP statistics. */
1279#if UIP_UDP
1280 struct {
1281 uip_stats_t drop; /**< Number of dropped UDP segments. */
1282 uip_stats_t recv; /**< Number of recived UDP segments. */
1283 uip_stats_t sent; /**< Number of sent UDP segments. */
1284 uip_stats_t chkerr; /**< Number of UDP segments with a bad
1285 checksum. */
1286 } udp; /**< UDP statistics. */
1287#endif /* UIP_UDP */
1288};
1289
1290/**
1291 * The uIP TCP/IP statistics.
1292 *
1293 * This is the variable in which the uIP TCP/IP statistics are gathered.
1294 */
1295extern struct uip_stats uip_stat;
1296
1297
1298/*---------------------------------------------------------------------------*/
1299/* All the stuff below this point is internal to uIP and should not be
1300 * used directly by an application or by a device driver.
1301 */
1302/*---------------------------------------------------------------------------*/
1303/* u8_t uip_flags:
1304 *
1305 * When the application is called, uip_flags will contain the flags
1306 * that are defined in this file. Please read below for more
1307 * infomation.
1308 */
1309extern u8_t uip_flags;
1310
1311/* The following flags may be set in the global variable uip_flags
1312 before calling the application callback. The UIP_ACKDATA,
1313 UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time,
1314 whereas the others are mutualy exclusive. Note that these flags
1315 should *NOT* be accessed directly, but only through the uIP
1316 functions/macros. */
1317
1318#define UIP_ACKDATA 1 /* Signifies that the outstanding data was
1319 acked and the application should send
1320 out new data instead of retransmitting
1321 the last data. */
1322#define UIP_NEWDATA 2 /* Flags the fact that the peer has sent
1323 us new data. */
1324#define UIP_REXMIT 4 /* Tells the application to retransmit the
1325 data that was last sent. */
1326#define UIP_POLL 8 /* Used for polling the application, to
1327 check if the application has data that
1328 it wants to send. */
1329#define UIP_CLOSE 16 /* The remote host has closed the
1330 connection, thus the connection has
1331 gone away. Or the application signals
1332 that it wants to close the
1333 connection. */
1334#define UIP_ABORT 32 /* The remote host has aborted the
1335 connection, thus the connection has
1336 gone away. Or the application signals
1337 that it wants to abort the
1338 connection. */
1339#define UIP_CONNECTED 64 /* We have got a connection from a remote
1340 host and have set up a new connection
1341 for it, or an active connection has
1342 been successfully established. */
1343
1344#define UIP_TIMEDOUT 128 /* The connection has been aborted due to
1345 too many retransmissions. */
1346
1347/* uip_process(flag):
1348 *
1349 * The actual uIP function which does all the work.
1350 */
1351void uip_process(u8_t flag);
1352
1353/* The following flags are passed as an argument to the uip_process()
1354 function. They are used to distinguish between the two cases where
1355 uip_process() is called. It can be called either because we have
1356 incoming data that should be processed, or because the periodic
1357 timer has fired. These values are never used directly, but only in
1358 the macrose defined in this file. */
1359
1360#define UIP_DATA 1 /* Tells uIP that there is incoming
1361 data in the uip_buf buffer. The
1362 length of the data is stored in the
1363 global variable uip_len. */
1364#define UIP_TIMER 2 /* Tells uIP that the periodic timer
1365 has fired. */
1366#define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should
1367 be polled. */
1368#define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram
1369 should be constructed in the
1370 uip_buf buffer. */
1371#if UIP_UDP
1372#define UIP_UDP_TIMER 5
1373#endif /* UIP_UDP */
1374
1375/* The TCP states used in the uip_conn->tcpstateflags. */
1376#define UIP_CLOSED 0
1377#define UIP_SYN_RCVD 1
1378#define UIP_SYN_SENT 2
1379#define UIP_ESTABLISHED 3
1380#define UIP_FIN_WAIT_1 4
1381#define UIP_FIN_WAIT_2 5
1382#define UIP_CLOSING 6
1383#define UIP_TIME_WAIT 7
1384#define UIP_LAST_ACK 8
1385#define UIP_TS_MASK 15
1386
1387#define UIP_STOPPED 16
1388
1389#ifdef __RX
1390#pragma pack
1391#elif _MSC_VER
1392#pragma pack(push, 1)
1393#endif
1394
1395/* The TCP and IP headers. */
1396struct uip_tcpip_hdr {
1397#if UIP_CONF_IPV6
1398 /* IPv6 header. */
1399 u8_t vtc,
1400 tcflow;
1401 u16_t flow;
1402 u8_t len[2];
1403 u8_t proto, ttl;
1404 uip_ip6addr_t srcipaddr, destipaddr;
1405#else /* UIP_CONF_IPV6 */
1406 /* IPv4 header. */
1407 u8_t vhl,
1408 tos,
1409 len[2],
1410 ipid[2],
1411 ipoffset[2],
1412 ttl,
1413 proto;
1414 u16_t ipchksum;
1415 u16_t srcipaddr[2],
1416 destipaddr[2];
1417#endif /* UIP_CONF_IPV6 */
1418
1419 /* TCP header. */
1420 u16_t srcport,
1421 destport;
1422 u8_t seqno[4],
1423 ackno[4],
1424 tcpoffset,
1425 flags,
1426 wnd[2];
1427 u16_t tcpchksum;
1428 u8_t urgp[2];
1429 u8_t optdata[4];
1430};
1431
1432/* The ICMP and IP headers. */
1433struct uip_icmpip_hdr {
1434#if UIP_CONF_IPV6
1435 /* IPv6 header. */
1436 u8_t vtc,
1437 tcf;
1438 u16_t flow;
1439 u8_t len[2];
1440 u8_t proto, ttl;
1441 uip_ip6addr_t srcipaddr, destipaddr;
1442#else /* UIP_CONF_IPV6 */
1443 /* IPv4 header. */
1444 u8_t vhl,
1445 tos,
1446 len[2],
1447 ipid[2],
1448 ipoffset[2],
1449 ttl,
1450 proto;
1451 u16_t ipchksum;
1452 u16_t srcipaddr[2],
1453 destipaddr[2];
1454#endif /* UIP_CONF_IPV6 */
1455
1456 /* ICMP (echo) header. */
1457 u8_t type, icode;
1458 u16_t icmpchksum;
1459#if !UIP_CONF_IPV6
1460 u16_t id, seqno;
1461#else /* !UIP_CONF_IPV6 */
1462 u8_t flags, reserved1, reserved2, reserved3;
1463 u8_t icmp6data[16];
1464 u8_t options[1];
1465#endif /* !UIP_CONF_IPV6 */
1466};
1467
1468
1469/* The UDP and IP headers. */
1470struct uip_udpip_hdr {
1471#if UIP_CONF_IPV6
1472 /* IPv6 header. */
1473 u8_t vtc,
1474 tcf;
1475 u16_t flow;
1476 u8_t len[2];
1477 u8_t proto, ttl;
1478 uip_ip6addr_t srcipaddr, destipaddr;
1479#else /* UIP_CONF_IPV6 */
1480 /* IP header. */
1481 u8_t vhl,
1482 tos,
1483 len[2],
1484 ipid[2],
1485 ipoffset[2],
1486 ttl,
1487 proto;
1488 u16_t ipchksum;
1489 u16_t srcipaddr[2],
1490 destipaddr[2];
1491#endif /* UIP_CONF_IPV6 */
1492
1493 /* UDP header. */
1494 u16_t srcport,
1495 destport;
1496 u16_t udplen;
1497 u16_t udpchksum;
1498};
1499
1500#ifdef __RX
1501#pragma unpack
1502#elif _MSC_VER
1503#pragma pack(pop)
1504#endif
1505
1506/**
1507 * The buffer size available for user data in the \ref uip_buf buffer.
1508 *
1509 * This macro holds the available size for user data in the \ref
1510 * uip_buf buffer. The macro is intended to be used for checking
1511 * bounds of available user data.
1512 *
1513 * Example:
1514 \code
1515 snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i);
1516 \endcode
1517 *
1518 * \hideinitializer
1519 */
1520#define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
1521
1522
1523#define UIP_PROTO_ICMP 1
1524#define UIP_PROTO_TCP 6
1525#define UIP_PROTO_UDP 17
1526#define UIP_PROTO_ICMP6 58
1527
1528/* Header sizes. */
1529#if UIP_CONF_IPV6
1530#define UIP_IPH_LEN 40
1531#else /* UIP_CONF_IPV6 */
1532#define UIP_IPH_LEN 20 /* Size of IP header */
1533#endif /* UIP_CONF_IPV6 */
1534#define UIP_UDPH_LEN 8 /* Size of UDP header */
1535#define UIP_TCPH_LEN 20 /* Size of TCP header */
1536#define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP +
1537 UDP
1538 header */
1539#define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP +
1540 TCP
1541 header */
1542#define UIP_TCPIP_HLEN UIP_IPTCPH_LEN
1543
1544
1545#if UIP_FIXEDADDR
1546extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
1547#else /* UIP_FIXEDADDR */
1548extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
1549#endif /* UIP_FIXEDADDR */
1550
1551
1552
1553/**
1554 * Representation of a 48-bit Ethernet address.
1555 */
1556struct uip_eth_addr {
1557 u8_t addr[6];
1558};
1559
1560/**
1561 * Calculate the Internet checksum over a buffer.
1562 *
1563 * The Internet checksum is the one's complement of the one's
1564 * complement sum of all 16-bit words in the buffer.
1565 *
1566 * See RFC1071.
1567 *
1568 * \param buf A pointer to the buffer over which the checksum is to be
1569 * computed.
1570 *
1571 * \param len The length of the buffer over which the checksum is to
1572 * be computed.
1573 *
1574 * \return The Internet checksum of the buffer.
1575 */
1576u16_t uip_chksum(u16_t *buf, u16_t len);
1577
1578/**
1579 * Calculate the IP header checksum of the packet header in uip_buf.
1580 *
1581 * The IP header checksum is the Internet checksum of the 20 bytes of
1582 * the IP header.
1583 *
1584 * \return The IP header checksum of the IP header in the uip_buf
1585 * buffer.
1586 */
1587u16_t uip_ipchksum(void);
1588
1589/**
1590 * Calculate the TCP checksum of the packet in uip_buf and uip_appdata.
1591 *
1592 * The TCP checksum is the Internet checksum of data contents of the
1593 * TCP segment, and a pseudo-header as defined in RFC793.
1594 *
1595 * \return The TCP checksum of the TCP segment in uip_buf and pointed
1596 * to by uip_appdata.
1597 */
1598u16_t uip_tcpchksum(void);
1599
1600/**
1601 * Calculate the UDP checksum of the packet in uip_buf and uip_appdata.
1602 *
1603 * The UDP checksum is the Internet checksum of data contents of the
1604 * UDP segment, and a pseudo-header as defined in RFC768.
1605 *
1606 * \return The UDP checksum of the UDP segment in uip_buf and pointed
1607 * to by uip_appdata.
1608 */
1609u16_t uip_udpchksum(void);
1610
1611
1612#endif /* __UIP_H__ */
1613
1614
1615/** @} */
Note: See TracBrowser for help on using the repository browser.