#include #include #include // Defines //////////////////////////////////////////////////////////////// // The Arduino two-wire interface uses a 7-bit number for the address, // and sets the last bit correctly based on reads and writes #define D_SA0_HIGH_ADDRESS 0b0011101 #define D_SA0_LOW_ADDRESS 0b0011110 #define DLHC_DLM_DLH_MAG_ADDRESS 0b0011110 #define DLHC_DLM_DLH_ACC_SA0_HIGH_ADDRESS 0b0011001 #define DLM_DLH_ACC_SA0_LOW_ADDRESS 0b0011000 #define TEST_REG_ERROR -1 #define D_WHO_ID 0x49 #define DLM_WHO_ID 0x3C // Constructors //////////////////////////////////////////////////////////////// LSM303::LSM303(void) { /* These values lead to an assumed magnetometer bias of 0. Use the Calibrate example program to determine appropriate values for your particular unit. The Heading example demonstrates how to adjust these values in your own sketch. */ m_min = (LSM303::vector){-32767, -32767, -32767}; m_max = (LSM303::vector){+32767, +32767, +32767}; _device = device_auto; io_timeout = 0; // 0 = no timeout did_timeout = false; } // Public Methods ////////////////////////////////////////////////////////////// // Did a timeout occur in readAcc(), readMag(), or read() since the last call to timeoutOccurred()? bool LSM303::timeoutOccurred() { bool tmp = did_timeout; did_timeout = false; return tmp; } void LSM303::setTimeout(unsigned int timeout) { io_timeout = timeout; } unsigned int LSM303::getTimeout() { return io_timeout; } bool LSM303::init(deviceType device, sa0State sa0) { // perform auto-detection unless device type and SA0 state were both specified if (device == device_auto || sa0 == sa0_auto) { // check for LSM303D if device is unidentified or was specified to be this type if (device == device_auto || device == device_D) { // check SA0 high address unless SA0 was specified to be low if (sa0 != sa0_low && testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID) { // device responds to address 0011101 with D ID; it's a D with SA0 high device = device_D; sa0 = sa0_high; } // check SA0 low address unless SA0 was specified to be high else if (sa0 != sa0_high && testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID) { // device responds to address 0011110 with D ID; it's a D with SA0 low device = device_D; sa0 = sa0_low; } } // check for LSM303DLHC, DLM, DLH if device is still unidentified or was specified to be one of these types if (device == device_auto || device == device_DLHC || device == device_DLM || device == device_DLH) { // check SA0 high address unless SA0 was specified to be low if (sa0 != sa0_low && testReg(DLHC_DLM_DLH_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_ERROR) { // device responds to address 0011001; it's a DLHC, DLM with SA0 high, or DLH with SA0 high sa0 = sa0_high; if (device == device_auto) { // use magnetometer WHO_AM_I register to determine device type // // DLHC seems to respond to WHO_AM_I request the same way as DLM, even though this // register isn't documented in its datasheet. Since the DLHC accelerometer address is the // same as the DLM with SA0 high, but Pololu DLM boards pull SA0 low by default, we'll // guess that a device whose accelerometer responds to the SA0 high address and whose // magnetometer gives the DLM ID is actually a DLHC. device = (testReg(DLHC_DLM_DLH_MAG_ADDRESS, WHO_AM_I_M) == DLM_WHO_ID) ? device_DLHC : device_DLH; } } // check SA0 low address unless SA0 was specified to be high else if (sa0 != sa0_high && testReg(DLM_DLH_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_ERROR) { // device responds to address 0011000; it's a DLM with SA0 low or DLH with SA0 low sa0 = sa0_low; if (device == device_auto) { // use magnetometer WHO_AM_I register to determine device type device = (testReg(DLHC_DLM_DLH_MAG_ADDRESS, WHO_AM_I_M) == DLM_WHO_ID) ? device_DLM : device_DLH; } } } // make sure device and SA0 were successfully detected; otherwise, indicate failure if (device == device_auto || sa0 == sa0_auto) { return false; } } _device = device; // set device addresses and translated register addresses switch (device) { case device_D: acc_address = mag_address = (sa0 == sa0_high) ? D_SA0_HIGH_ADDRESS : D_SA0_LOW_ADDRESS; translated_regs[-OUT_X_L_M] = D_OUT_X_L_M; translated_regs[-OUT_X_H_M] = D_OUT_X_H_M; translated_regs[-OUT_Y_L_M] = D_OUT_Y_L_M; translated_regs[-OUT_Y_H_M] = D_OUT_Y_H_M; translated_regs[-OUT_Z_L_M] = D_OUT_Z_L_M; translated_regs[-OUT_Z_H_M] = D_OUT_Z_H_M; break; case device_DLHC: acc_address = DLHC_DLM_DLH_ACC_SA0_HIGH_ADDRESS; // DLHC doesn't have configurable SA0 but uses same acc address as DLM/DLH with SA0 high mag_address = DLHC_DLM_DLH_MAG_ADDRESS; translated_regs[-OUT_X_H_M] = DLHC_OUT_X_H_M; translated_regs[-OUT_X_L_M] = DLHC_OUT_X_L_M; translated_regs[-OUT_Y_H_M] = DLHC_OUT_Y_H_M; translated_regs[-OUT_Y_L_M] = DLHC_OUT_Y_L_M; translated_regs[-OUT_Z_H_M] = DLHC_OUT_Z_H_M; translated_regs[-OUT_Z_L_M] = DLHC_OUT_Z_L_M; break; case device_DLM: acc_address = (sa0 == sa0_high) ? DLHC_DLM_DLH_ACC_SA0_HIGH_ADDRESS : DLM_DLH_ACC_SA0_LOW_ADDRESS; mag_address = DLHC_DLM_DLH_MAG_ADDRESS; translated_regs[-OUT_X_H_M] = DLM_OUT_X_H_M; translated_regs[-OUT_X_L_M] = DLM_OUT_X_L_M; translated_regs[-OUT_Y_H_M] = DLM_OUT_Y_H_M; translated_regs[-OUT_Y_L_M] = DLM_OUT_Y_L_M; translated_regs[-OUT_Z_H_M] = DLM_OUT_Z_H_M; translated_regs[-OUT_Z_L_M] = DLM_OUT_Z_L_M; break; case device_DLH: acc_address = (sa0 == sa0_high) ? DLHC_DLM_DLH_ACC_SA0_HIGH_ADDRESS : DLM_DLH_ACC_SA0_LOW_ADDRESS; mag_address = DLHC_DLM_DLH_MAG_ADDRESS; translated_regs[-OUT_X_H_M] = DLH_OUT_X_H_M; translated_regs[-OUT_X_L_M] = DLH_OUT_X_L_M; translated_regs[-OUT_Y_H_M] = DLH_OUT_Y_H_M; translated_regs[-OUT_Y_L_M] = DLH_OUT_Y_L_M; translated_regs[-OUT_Z_H_M] = DLH_OUT_Z_H_M; translated_regs[-OUT_Z_L_M] = DLH_OUT_Z_L_M; break; } return true; } /* Enables the LSM303's accelerometer and magnetometer. Also: - Sets sensor full scales (gain) to default power-on values, which are +/- 2 g for accelerometer and +/- 1.3 gauss for magnetometer (+/- 4 gauss on LSM303D). - Selects 50 Hz ODR (output data rate) for accelerometer and 7.5 Hz ODR for magnetometer (6.25 Hz on LSM303D). (These are the ODR settings for which the electrical characteristics are specified in the datasheets.) - Enables high resolution modes (if available). Note that this function will also reset other settings controlled by the registers it writes to. */ void LSM303::enableDefault(void) { if (_device == device_D) { // Accelerometer // 0x00 = 0b00000000 // AFS = 0 (+/- 2 g full scale) writeReg(CTRL2, 0x00); // 0x57 = 0b01010111 // AODR = 0101 (50 Hz ODR); AZEN = AYEN = AXEN = 1 (all axes enabled) writeReg(CTRL1, 0x57); // Magnetometer // 0x64 = 0b01100100 // M_RES = 11 (high resolution mode); M_ODR = 001 (6.25 Hz ODR) writeReg(CTRL5, 0x64); // 0x20 = 0b00100000 // MFS = 01 (+/- 4 gauss full scale) writeReg(CTRL6, 0x20); // 0x00 = 0b00000000 // MLP = 0 (low power mode off); MD = 00 (continuous-conversion mode) writeReg(CTRL7, 0x00); } else { // Accelerometer if (_device == device_DLHC) { // 0x08 = 0b00001000 // FS = 00 (+/- 2 g full scale); HR = 1 (high resolution enable) writeAccReg(CTRL_REG4_A, 0x08); // 0x47 = 0b01000111 // ODR = 0100 (50 Hz ODR); LPen = 0 (normal mode); Zen = Yen = Xen = 1 (all axes enabled) writeAccReg(CTRL_REG1_A, 0x47); } else // DLM, DLH { // 0x00 = 0b00000000 // FS = 00 (+/- 2 g full scale) writeAccReg(CTRL_REG4_A, 0x00); // 0x27 = 0b00100111 // PM = 001 (normal mode); DR = 00 (50 Hz ODR); Zen = Yen = Xen = 1 (all axes enabled) writeAccReg(CTRL_REG1_A, 0x27); } // Magnetometer // 0x0C = 0b00001100 // DO = 011 (7.5 Hz ODR) writeMagReg(CRA_REG_M, 0x0C); // 0x20 = 0b00100000 // GN = 001 (+/- 1.3 gauss full scale) writeMagReg(CRB_REG_M, 0x20); // 0x00 = 0b00000000 // MD = 00 (continuous-conversion mode) writeMagReg(MR_REG_M, 0x00); } } // Writes an accelerometer register void LSM303::writeAccReg(byte reg, byte value) { Wire.beginTransmission(acc_address); Wire.write(reg); Wire.write(value); last_status = Wire.endTransmission(); } // Reads an accelerometer register byte LSM303::readAccReg(byte reg) { byte value; Wire.beginTransmission(acc_address); Wire.write(reg); last_status = Wire.endTransmission(); Wire.requestFrom(acc_address, (byte)1); value = Wire.read(); Wire.endTransmission(); return value; } // Writes a magnetometer register void LSM303::writeMagReg(byte reg, byte value) { Wire.beginTransmission(mag_address); Wire.write(reg); Wire.write(value); last_status = Wire.endTransmission(); } // Reads a magnetometer register byte LSM303::readMagReg(int reg) { byte value; // if dummy register address (magnetometer Y/Z), look up actual translated address (based on device type) if (reg < 0) { reg = translated_regs[-reg]; } Wire.beginTransmission(mag_address); Wire.write(reg); last_status = Wire.endTransmission(); Wire.requestFrom(mag_address, (byte)1); value = Wire.read(); Wire.endTransmission(); return value; } void LSM303::writeReg(byte reg, byte value) { // mag address == acc_address for LSM303D, so it doesn't really matter which one we use. if (_device == device_D || reg < CTRL_REG1_A) { writeMagReg(reg, value); } else { writeAccReg(reg, value); } } // Note that this function will not work for reading TEMP_OUT_H_M and TEMP_OUT_L_M on the DLHC. // To read those two registers, use readMagReg() instead. byte LSM303::readReg(int reg) { // mag address == acc_address for LSM303D, so it doesn't really matter which one we use. // Use readMagReg so it can translate OUT_[XYZ]_[HL]_M if (_device == device_D || reg < CTRL_REG1_A) { return readMagReg(reg); } else { return readAccReg(reg); } } // Reads the 3 accelerometer channels and stores them in vector a void LSM303::readAcc(void) { Wire.beginTransmission(acc_address); // assert the MSB of the address to get the accelerometer // to do slave-transmit subaddress updating. Wire.write(OUT_X_L_A | (1 << 7)); last_status = Wire.endTransmission(); Wire.requestFrom(acc_address, (byte)6); unsigned int millis_start = millis(); while (Wire.available() < 6) { if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout) { did_timeout = true; return; } } byte xla = Wire.read(); byte xha = Wire.read(); byte yla = Wire.read(); byte yha = Wire.read(); byte zla = Wire.read(); byte zha = Wire.read(); // combine high and low bytes // This no longer drops the lowest 4 bits of the readings from the DLH/DLM/DLHC, which are always 0 // (12-bit resolution, left-aligned). The D has 16-bit resolution a.x = (int16_t)(xha << 8 | xla); a.y = (int16_t)(yha << 8 | yla); a.z = (int16_t)(zha << 8 | zla); } // Reads the 3 magnetometer channels and stores them in vector m void LSM303::readMag(void) { Wire.beginTransmission(mag_address); // If LSM303D, assert MSB to enable subaddress updating // OUT_X_L_M comes first on D, OUT_X_H_M on others Wire.write((_device == device_D) ? translated_regs[-OUT_X_L_M] | (1 << 7) : translated_regs[-OUT_X_H_M]); last_status = Wire.endTransmission(); Wire.requestFrom(mag_address, (byte)6); unsigned int millis_start = millis(); while (Wire.available() < 6) { if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout) { did_timeout = true; return; } } byte xlm, xhm, ylm, yhm, zlm, zhm; if (_device == device_D) { // D: X_L, X_H, Y_L, Y_H, Z_L, Z_H xlm = Wire.read(); xhm = Wire.read(); ylm = Wire.read(); yhm = Wire.read(); zlm = Wire.read(); zhm = Wire.read(); } else { // DLHC, DLM, DLH: X_H, X_L... xhm = Wire.read(); xlm = Wire.read(); if (_device == device_DLH) { // DLH: ...Y_H, Y_L, Z_H, Z_L yhm = Wire.read(); ylm = Wire.read(); zhm = Wire.read(); zlm = Wire.read(); } else { // DLM, DLHC: ...Z_H, Z_L, Y_H, Y_L zhm = Wire.read(); zlm = Wire.read(); yhm = Wire.read(); ylm = Wire.read(); } } // combine high and low bytes m.x = (int16_t)(xhm << 8 | xlm); m.y = (int16_t)(yhm << 8 | ylm); m.z = (int16_t)(zhm << 8 | zlm); } // Reads all 6 channels of the LSM303 and stores them in the object variables void LSM303::read(void) { readAcc(); readMag(); } /* Returns the angular difference in the horizontal plane between a default vector and north, in degrees. The default vector here is chosen to point along the surface of the PCB, in the direction of the top of the text on the silkscreen. This is the +X axis on the Pololu LSM303D carrier and the -Y axis on the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers. */ float LSM303::heading(void) { if (_device == device_D) { return heading((vector){1, 0, 0}); } else { return heading((vector){0, -1, 0}); } } void LSM303::vector_normalize(vector *a) { float mag = sqrt(vector_dot(a, a)); a->x /= mag; a->y /= mag; a->z /= mag; } // Private Methods ////////////////////////////////////////////////////////////// int LSM303::testReg(byte address, regAddr reg) { Wire.beginTransmission(address); Wire.write((byte)reg); if (Wire.endTransmission() != 0) { return TEST_REG_ERROR; } Wire.requestFrom(address, (byte)1); if (Wire.available()) { return Wire.read(); } else { return TEST_REG_ERROR; } }