/* This is the core graphics library for all our displays, providing a common set of graphics primitives (points, lines, circles, etc.). It needs to be paired with a hardware-specific library for each display device we carry (to handle the lower-level functions). Adafruit invests time and resources providing this open source code, please support Adafruit & open-source hardware by purchasing products from Adafruit! Copyright (c) 2013 Adafruit Industries. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Adafruit_GFX.h" #include "glcdfont.c" #ifdef __AVR__ #include #else #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #endif Adafruit_GFX::Adafruit_GFX(int16_t w, int16_t h) : WIDTH(w), HEIGHT(h) { _width = WIDTH; _height = HEIGHT; rotation = 0; cursor_y = cursor_x = 0; textsize = 1; textcolor = textbgcolor = 0xFFFF; wrap = true; } // draw a circle outline void Adafruit_GFX::drawCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; drawPixel(x0, y0+r, color); drawPixel(x0, y0-r, color); drawPixel(x0+r, y0, color); drawPixel(x0-r, y0, color); while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; drawPixel(x0 + x, y0 + y, color); drawPixel(x0 - x, y0 + y, color); drawPixel(x0 + x, y0 - y, color); drawPixel(x0 - x, y0 - y, color); drawPixel(x0 + y, y0 + x, color); drawPixel(x0 - y, y0 + x, color); drawPixel(x0 + y, y0 - x, color); drawPixel(x0 - y, y0 - x, color); } } void Adafruit_GFX::drawCircleHelper( int16_t x0, int16_t y0, int16_t r, uint8_t cornername, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x4) { drawPixel(x0 + x, y0 + y, color); drawPixel(x0 + y, y0 + x, color); } if (cornername & 0x2) { drawPixel(x0 + x, y0 - y, color); drawPixel(x0 + y, y0 - x, color); } if (cornername & 0x8) { drawPixel(x0 - y, y0 + x, color); drawPixel(x0 - x, y0 + y, color); } if (cornername & 0x1) { drawPixel(x0 - y, y0 - x, color); drawPixel(x0 - x, y0 - y, color); } } } void Adafruit_GFX::fillCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { drawFastVLine(x0, y0-r, 2*r+1, color); fillCircleHelper(x0, y0, r, 3, 0, color); } // used to do circles and roundrects void Adafruit_GFX::fillCircleHelper(int16_t x0, int16_t y0, int16_t r, uint8_t cornername, int16_t delta, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x1) { drawFastVLine(x0+x, y0-y, 2*y+1+delta, color); drawFastVLine(x0+y, y0-x, 2*x+1+delta, color); } if (cornername & 0x2) { drawFastVLine(x0-x, y0-y, 2*y+1+delta, color); drawFastVLine(x0-y, y0-x, 2*x+1+delta, color); } } } // Bresenham's algorithm - thx wikpedia void Adafruit_GFX::drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t color) { int16_t steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { swap(x0, y0); swap(x1, y1); } if (x0 > x1) { swap(x0, x1); swap(y0, y1); } int16_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int16_t err = dx / 2; int16_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1; } for (; x0<=x1; x0++) { if (steep) { drawPixel(y0, x0, color); } else { drawPixel(x0, y0, color); } err -= dy; if (err < 0) { y0 += ystep; err += dx; } } } // Draw a rectangle void Adafruit_GFX::drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { drawFastHLine(x, y, w, color); drawFastHLine(x, y+h-1, w, color); drawFastVLine(x, y, h, color); drawFastVLine(x+w-1, y, h, color); } void Adafruit_GFX::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // Update in subclasses if desired! drawLine(x, y, x, y+h-1, color); } void Adafruit_GFX::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // Update in subclasses if desired! drawLine(x, y, x+w-1, y, color); } void Adafruit_GFX::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // Update in subclasses if desired! for (int16_t i=x; i= y1 >= y0) if (y0 > y1) { swap(y0, y1); swap(x0, x1); } if (y1 > y2) { swap(y2, y1); swap(x2, x1); } if (y0 > y1) { swap(y0, y1); swap(x0, x1); } if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing a = b = x0; if(x1 < a) a = x1; else if(x1 > b) b = x1; if(x2 < a) a = x2; else if(x2 > b) b = x2; drawFastHLine(a, y0, b-a+1, color); return; } int16_t dx01 = x1 - x0, dy01 = y1 - y0, dx02 = x2 - x0, dy02 = y2 - y0, dx12 = x2 - x1, dy12 = y2 - y1, sa = 0, sb = 0; // For upper part of triangle, find scanline crossings for segments // 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1 // is included here (and second loop will be skipped, avoiding a /0 // error there), otherwise scanline y1 is skipped here and handled // in the second loop...which also avoids a /0 error here if y0=y1 // (flat-topped triangle). if(y1 == y2) last = y1; // Include y1 scanline else last = y1-1; // Skip it for(y=y0; y<=last; y++) { a = x0 + sa / dy01; b = x0 + sb / dy02; sa += dx01; sb += dx02; /* longhand: a = x0 + (x1 - x0) * (y - y0) / (y1 - y0); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); drawFastHLine(a, y, b-a+1, color); } // For lower part of triangle, find scanline crossings for segments // 0-2 and 1-2. This loop is skipped if y1=y2. sa = dx12 * (y - y1); sb = dx02 * (y - y0); for(; y<=y2; y++) { a = x1 + sa / dy12; b = x0 + sb / dy02; sa += dx12; sb += dx02; /* longhand: a = x1 + (x2 - x1) * (y - y1) / (y2 - y1); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); drawFastHLine(a, y, b-a+1, color); } } void Adafruit_GFX::drawBitmap(int16_t x, int16_t y, const uint8_t *bitmap, int16_t w, int16_t h, uint16_t color) { int16_t i, j, byteWidth = (w + 7) / 8; for(j=0; j> (i & 7))) { drawPixel(x+i, y+j, color); } } } } #if ARDUINO >= 100 size_t Adafruit_GFX::write(uint8_t c) { #else void Adafruit_GFX::write(uint8_t c) { #endif if (c == '\n') { cursor_y += textsize*8; cursor_x = 0; } else if (c == '\r') { // skip em } else { drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize); cursor_x += textsize*6; if (wrap && (cursor_x > (_width - textsize*6))) { cursor_y += textsize*8; cursor_x = 0; } } #if ARDUINO >= 100 return 1; #endif } // draw a character void Adafruit_GFX::drawChar(int16_t x, int16_t y, unsigned char c, uint16_t color, uint16_t bg, uint8_t size) { if((x >= _width) || // Clip right (y >= _height) || // Clip bottom ((x + 6 * size - 1) < 0) || // Clip left ((y + 8 * size - 1) < 0)) // Clip top return; for (int8_t i=0; i<6; i++ ) { uint8_t line; if (i == 5) line = 0x0; else line = pgm_read_byte(font+(c*5)+i); for (int8_t j = 0; j<8; j++) { if (line & 0x1) { if (size == 1) // default size drawPixel(x+i, y+j, color); else { // big size fillRect(x+(i*size), y+(j*size), size, size, color); } } else if (bg != color) { if (size == 1) // default size drawPixel(x+i, y+j, bg); else { // big size fillRect(x+i*size, y+j*size, size, size, bg); } } line >>= 1; } } } void Adafruit_GFX::setCursor(int16_t x, int16_t y) { cursor_x = x; cursor_y = y; } void Adafruit_GFX::setTextSize(uint8_t s) { textsize = (s > 0) ? s : 1; } void Adafruit_GFX::setTextColor(uint16_t c) { textcolor = c; textbgcolor = c; // for 'transparent' background, we'll set the bg // to the same as fg instead of using a flag } void Adafruit_GFX::setTextColor(uint16_t c, uint16_t b) { textcolor = c; textbgcolor = b; } void Adafruit_GFX::setTextWrap(boolean w) { wrap = w; } uint8_t Adafruit_GFX::getRotation(void) { return rotation; } void Adafruit_GFX::setRotation(uint8_t x) { rotation = (x & 3); switch (x) { case 0: case 2: _width = WIDTH; _height = HEIGHT; break; case 1: case 3: _width = HEIGHT; _height = WIDTH; break; } } // return the size of the display (per current rotation) int16_t Adafruit_GFX::width(void) { return _width; } int16_t Adafruit_GFX::height(void) { return _height; } void Adafruit_GFX::invertDisplay(boolean i) { // Do nothing, must be subclassed if supported } uint16_t Adafruit_GFX::newColor(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3); } void Adafruit_GFX::background(uint8_t red, uint8_t green, uint8_t blue) { background(newColor(red, green, blue)); } void Adafruit_GFX::background(color c) { fillScreen(c); } void Adafruit_GFX::stroke(uint8_t red, uint8_t green, uint8_t blue) { stroke(newColor(red, green, blue)); } void Adafruit_GFX::stroke(color c) { useStroke = true; strokeColor = c; setTextColor(c); } void Adafruit_GFX::noStroke() { useStroke = false; } void Adafruit_GFX::noFill() { useFill = false; } void Adafruit_GFX::fill(uint8_t red, uint8_t green, uint8_t blue) { fill(newColor(red, green, blue)); } void Adafruit_GFX::fill(color c) { useFill = true; fillColor = c; } void Adafruit_GFX::text(const char * text, int16_t x, int16_t y) { if (!useStroke) return; setTextWrap(false); setTextColor(strokeColor); setCursor(x, y); print(text); } void Adafruit_GFX::textWrap(const char * text, int16_t x, int16_t y) { if (!useStroke) return; setTextWrap(true); setTextColor(strokeColor); setCursor(x, y); print(text); } void Adafruit_GFX::textSize(uint8_t size) { setTextSize(size); } void Adafruit_GFX::point(int16_t x, int16_t y) { if (!useStroke) return; drawPixel(x, y, strokeColor); } void Adafruit_GFX::line(int16_t x1, int16_t y1, int16_t x2, int16_t y2) { if (!useStroke) return; if (x1 == x2) { if (y1 < y2) drawFastVLine(x1, y1, y2 - y1, strokeColor); else drawFastVLine(x1, y2, y1 - y2, strokeColor); } else if (y1 == y2) { if (x1 < x2) drawFastHLine(x1, y1, x2 - x1, strokeColor); else drawFastHLine(x2, y1, x1 - x2, strokeColor); } else { drawLine(x1, y1, x2, y2, strokeColor); } } void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height) { if (useFill) { fillRect(x, y, width, height, fillColor); } if (useStroke) { drawRect(x, y, width, height, strokeColor); } } void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius) { if (radius == 0) { rect(x, y, width, height); } if (useFill) { fillRoundRect(x, y, width, height, radius, fillColor); } if (useStroke) { drawRoundRect(x, y, width, height, radius, strokeColor); } } void Adafruit_GFX::circle(int16_t x, int16_t y, int16_t r) { if (r == 0) return; if (useFill) { fillCircle(x, y, r, fillColor); } if (useStroke) { drawCircle(x, y, r, strokeColor); } } void Adafruit_GFX::triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3) { if (useFill) { fillTriangle(x1, y1, x2, y2, x3, y3, fillColor); } if (useStroke) { drawTriangle(x1, y1, x2, y2, x3, y3, strokeColor); } } #if defined(__SD_H__) // Arduino SD library #define BUFFPIXEL 20 void Adafruit_GFX::image(PImage & img, uint16_t x, uint16_t y) { int w, h, row, col; uint8_t r, g, b; uint32_t pos = 0; uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel) uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer // Crop area to be loaded w = img._bmpWidth; h = img._bmpHeight; if((x+w-1) >= width()) w = width() - x; if((y+h-1) >= height()) h = height() - y; /* // Set TFT address window to clipped image bounds setAddrWindow(x, y, x+w-1, y+h-1); */ for (row=0; row= sizeof(sdbuffer)) { // Indeed img._bmpFile.read(sdbuffer, sizeof(sdbuffer)); buffidx = 0; // Set index to beginning } // Convert pixel from BMP to TFT format, push to display b = sdbuffer[buffidx++]; g = sdbuffer[buffidx++]; r = sdbuffer[buffidx++]; //pushColor(tft.Color565(r,g,b)); drawPixel(x + col, y + row, newColor(r, g, b)); } // end pixel } // end scanline } #endif