/* Copyright (c) 2013 Arduino LLC. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ //Edited by Arduino Srl development team. #if defined(ARDUINO_ARCH_SAMD) #include #include static servo_t servos[MAX_SERVOS]; // static array of servo structures uint8_t ServoCount = 0; // the total number of attached servos uint8_t isTC = 0 ; Tc* TCx ; Tcc* TCCx; uint8_t Channelx = 0; // convenience macros #define SERVO_MIN_TCC() (MIN_PULSE_WIDTH_SAMD_TCC) // minimum value in uS for this servo if TCC timer is used #define SERVO_MAX_TCC() (MAX_PULSE_WIDTH_SAMD_TCC) // maximum value in uS for this servo if TCC timer is used #define SERVO_MIN_TC() (MIN_PULSE_WIDTH_SAMD_TC) // minimum value in uS for this servo if TC timer is used #define SERVO_MAX_TC() (MAX_PULSE_WIDTH_SAMD_TC) // maximum value in uS for this servo if TC timer is used /************ static functions common to all instances ***********************/ //------------------------------------------------------------------------------ /// Interrupt handler for the TC0 channel 1. //------------------------------------------------------------------------------ /****************** end of static functions ******************************/ Servo::Servo() { if (ServoCount < MAX_SERVOS) { this->servoIndex = ServoCount++; // assign a servo index to this instance } else { this->servoIndex = INVALID_SERVO; // too many servos } } uint8_t Servo::attach(int pin) { if((servos[this->servoIndex].Pin.nbr==4) | (servos[this->servoIndex].Pin.nbr==5) | (servos[this->servoIndex].Pin.nbr==10) | (servos[this->servoIndex].Pin.nbr==12) ){ return this->attach(pin, SERVO_MIN_TC(), SERVO_MAX_TC()); } else{ return this->attach(pin, SERVO_MIN_TCC(), SERVO_MAX_TCC()); } } uint8_t Servo::attach(int pin, int min, int max) { if (this->servoIndex < MAX_SERVOS) { pinMode(pin, OUTPUT); // set servo pin to output servos[this->servoIndex].Pin.nbr = pin; int servo_min, servo_max; if(pin==4 | pin==5 | pin==10 | pin==12){ servo_min=SERVO_MIN_TC(); servo_max=SERVO_MAX_TC(); } else{ servo_min=SERVO_MIN_TCC(); servo_max=SERVO_MAX_TCC(); } if(min > servo_min) min = servo_min; if (max > servo_max) max = servo_max; this->min = min; this->max = max; switch(pin) { case 2: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC0; Channelx=0; isTC=0; } break; case 3: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC0; Channelx=1; isTC=0; } break; case 4: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCx=TC3; Channelx=0; isTC=1; } break; case 5: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCx=TC3; Channelx=1; isTC=1; } break; case 6: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC0; Channelx=2; isTC=0; } break; case 7: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC0; Channelx=3; isTC=0; } break; case 8: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC1; Channelx=0; isTC=0; } break; case 9: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC1; Channelx=1; isTC=0; } break; case 10: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCx=TC3; Channelx=0; isTC=1; } break; case 11: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC2; Channelx=0; isTC=0; } break; case 12: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCx=TC3; Channelx=1; isTC=1; } break; case 13: { pinPeripheral(pin, g_APinDescription[pin].ulPinType); TCCx=TCC2; Channelx=1; isTC=0; } break; default: break; } if ((TCCx==TCC0) | (TCCx==TCC1)) GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK3 | GCLK_CLKCTRL_ID( GCM_TCC0_TCC1 )) ; else if((TCCx==TCC2) | (TCx==TC3 ))GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK3 | GCLK_CLKCTRL_ID( GCM_TCC2_TC3 )) ; else; if(servos[this->servoIndex].Pin.isActive == false){ // Set PORT if ( isTC ) { // -- Configure TC //DISABLE TCx TCx->COUNT16.CTRLA.reg &=~(TC_CTRLA_ENABLE); //Set Timer counter Mode to 16 bits TCx->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16; //Set Prescaler to divide by 2 TCx->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV2; //Set TCx as normal PWM TCx->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_NPWM; //default value for servo position TCx->COUNT16.CC[Channelx].reg = 1500; //ENABLE TCx TCx->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE; servos[this->servoIndex].Pin.isActive = true; } else { // -- Configure TCC TCCx->CTRLA.reg &=~(TCC_CTRLA_ENABLE); //disable TCC module TCCx->CTRLA.reg |=TCC_CTRLA_PRESCALER_DIV8; //setting prescaler to divide by 8 TCCx->WAVE.reg |= TCC_WAVE_WAVEGEN_NPWM; //Set TCCx as normal PWM TCCx->CC[Channelx].reg=1500; //default value for servo position TCCx->PER.reg=20000; // setting servo frequency (50 hz) TCCx->CTRLA.reg |= TCC_CTRLA_ENABLE ; //ENABLE TCCx servos[this->servoIndex].Pin.isActive = true; } } } return this->servoIndex; } void Servo::detach() { servos[this->servoIndex].Pin.isActive = false; if((servos[this->servoIndex].Pin.nbr == 2) | (servos[this->servoIndex].Pin.nbr == 3) | (servos[this->servoIndex].Pin.nbr == 6) | (servos[this->servoIndex].Pin.nbr == 7)) TCC0->CTRLA.reg &=~(TCC_CTRLA_ENABLE); else if((servos[this->servoIndex].Pin.nbr == 8) | (servos[this->servoIndex].Pin.nbr == 9)) TCC1->CTRLA.reg &=~(TCC_CTRLA_ENABLE); else if ((servos[this->servoIndex].Pin.nbr == 11) | (servos[this->servoIndex].Pin.nbr == 13)) TCC2->CTRLA.reg &=~(TCC_CTRLA_ENABLE); else if ((servos[this->servoIndex].Pin.nbr == 4 ) | (servos[this->servoIndex].Pin.nbr == 5 ) | (servos[this->servoIndex].Pin.nbr == 10 ) | (servos[this->servoIndex].Pin.nbr == 12 ))TC3->COUNT16.CTRLA.reg &=~(TC_CTRLA_ENABLE); } void Servo::write(int value) { //select the right values for servo motor int servo_min; int servo_max; if((servos[this->servoIndex].Pin.nbr==4) | (servos[this->servoIndex].Pin.nbr==5) | (servos[this->servoIndex].Pin.nbr==10) | (servos[this->servoIndex].Pin.nbr==12) ){ servo_min=SERVO_MIN_TC(); servo_max=SERVO_MAX_TC(); // treat values less than 1700 as angles in degrees (valid values in microseconds are handled as microseconds) if (value < servo_min) { if (value < 0) value = 0; else if (value > 180) value = 180; value = map(value, 0, 180, servo_min, servo_max); } } else{ servo_min=SERVO_MIN_TCC(); servo_max=SERVO_MAX_TCC(); // treat values less than 400 as angles in degrees (valid values in microseconds are handled as microseconds) if (value < servo_min) { if (value < 0) value = 0; else if (value > 180) value = 180; value = map(value, 0, 180, servo_min, servo_max); } } writeMicroseconds(value); } void Servo::writeMicroseconds(int value) { // calculate and store the values for the given channel byte channel = this->servoIndex; if( (channel < MAX_SERVOS) ) // ensure channel is valid { //select the right values for servo motor int servo_min; int servo_max; if((servos[this->servoIndex].Pin.nbr==4) | (servos[this->servoIndex].Pin.nbr==5) | (servos[this->servoIndex].Pin.nbr==10) | (servos[this->servoIndex].Pin.nbr==12) ){ servo_min=SERVO_MIN_TC(); servo_max=SERVO_MAX_TC(); } else{ servo_min=SERVO_MIN_TCC(); servo_max=SERVO_MAX_TCC(); } if (value < servo_min) // ensure pulse width is valid value = servo_min; else if (value > servo_max) value = servo_max; servos[this->servoIndex].ticks = value; switch(servos[this->servoIndex].Pin.nbr) { case 2: TCC0->CC[0].reg=value; break; case 3: TCC0->CC[1].reg=value; break; case 4: TC3->COUNT16.CC[0].reg = value; break; case 5: TC3->COUNT16.CC[1].reg = value; break; case 6: TCC0->CC[2].reg=value; break; case 7: TCC0->CC[3].reg=value; break; case 8: TCC1->CC[0].reg=value; break; case 9: TCC1->CC[1].reg=value; break; case 10: TC3->COUNT16.CC[0].reg = value; break; case 11: TCC2->CC[0].reg=value; break; case 12: TC3->COUNT16.CC[1].reg = value; break; case 13: TCC2->CC[1].reg=value; break; default: break; } //servos[this->servoIndex].ticks = value; //to be fixed //servos[channel].ticks = value; } } int Servo::read() // return the value as degrees { //select the right values for servo motor int servo_min; int servo_max; if((servos[this->servoIndex].Pin.nbr==4) | (servos[this->servoIndex].Pin.nbr==5) | (servos[this->servoIndex].Pin.nbr==10) | (servos[this->servoIndex].Pin.nbr==12) ){ servo_min=SERVO_MIN_TC(); servo_max=SERVO_MAX_TC(); } else{ servo_min=SERVO_MIN_TCC(); servo_max=SERVO_MAX_TCC(); } return map(readMicroseconds(), servo_min, servo_max, 0, 180); } int Servo::readMicroseconds() { unsigned int pulsewidth; if (this->servoIndex != INVALID_SERVO) pulsewidth = servos[this->servoIndex].ticks; else pulsewidth = 0; return pulsewidth; } bool Servo::attached() { return servos[this->servoIndex].Pin.isActive; } #endif // ARDUINO_ARCH_SAM