/* Copyright (c) 2013 Arduino LLC. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if defined(ARDUINO_ARCH_SAM) #include #include #define usToTicks(_us) (( clockCyclesPerMicrosecond() * _us) / 32) // converts microseconds to tick #define ticksToUs(_ticks) (( (unsigned)_ticks * 32)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays static servo_t servos[MAX_SERVOS]; // static array of servo structures uint8_t ServoCount = 0; // the total number of attached servos static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval) // convenience macros #define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo #define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer #define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel #define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel #define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo #define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo /************ static functions common to all instances ***********************/ //------------------------------------------------------------------------------ /// Interrupt handler for the TC0 channel 1. //------------------------------------------------------------------------------ void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel); #if defined (_useTimer1) void HANDLER_FOR_TIMER1(void) { Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); } #endif #if defined (_useTimer2) void HANDLER_FOR_TIMER2(void) { Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2); } #endif #if defined (_useTimer3) void HANDLER_FOR_TIMER3(void) { Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3); } #endif #if defined (_useTimer4) void HANDLER_FOR_TIMER4(void) { Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4); } #endif #if defined (_useTimer5) void HANDLER_FOR_TIMER5(void) { Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); } #endif void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel) { // clear interrupt tc->TC_CHANNEL[channel].TC_SR; if (Channel[timer] < 0) { tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer } else { if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true) { digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated } } Channel[timer]++; // increment to the next channel if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) { tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks; if(SERVO(timer,Channel[timer]).Pin.isActive == true) { // check if activated digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high } } else { // finished all channels so wait for the refresh period to expire before starting over if( (tc->TC_CHANNEL[channel].TC_CV) + 4 < usToTicks(REFRESH_INTERVAL) ) { // allow a few ticks to ensure the next OCR1A not missed tc->TC_CHANNEL[channel].TC_RA = (unsigned int)usToTicks(REFRESH_INTERVAL); } else { tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed } Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel } } static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn) { pmc_enable_periph_clk(id); TC_Configure(tc, channel, TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32 TC_CMR_WAVE | // Waveform mode TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC /* 84MHz, MCK/32, for 1.5ms: 3937 */ TC_SetRA(tc, channel, 2625); // 1ms /* Configure and enable interrupt */ NVIC_EnableIRQ(irqn); // TC_IER_CPAS: RA Compare tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS; // Enables the timer clock and performs a software reset to start the counting TC_Start(tc, channel); } static void initISR(timer16_Sequence_t timer) { #if defined (_useTimer1) if (timer == _timer1) _initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1); #endif #if defined (_useTimer2) if (timer == _timer2) _initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2); #endif #if defined (_useTimer3) if (timer == _timer3) _initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3); #endif #if defined (_useTimer4) if (timer == _timer4) _initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4); #endif #if defined (_useTimer5) if (timer == _timer5) _initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5); #endif } static void finISR(timer16_Sequence_t timer) { #if defined (_useTimer1) TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); #endif #if defined (_useTimer2) TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2); #endif #if defined (_useTimer3) TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3); #endif #if defined (_useTimer4) TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4); #endif #if defined (_useTimer5) TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); #endif } static boolean isTimerActive(timer16_Sequence_t timer) { // returns true if any servo is active on this timer for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { if(SERVO(timer,channel).Pin.isActive == true) return true; } return false; } /****************** end of static functions ******************************/ Servo::Servo() { if (ServoCount < MAX_SERVOS) { this->servoIndex = ServoCount++; // assign a servo index to this instance servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values } else { this->servoIndex = INVALID_SERVO; // too many servos } } uint8_t Servo::attach(int pin) { return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); } uint8_t Servo::attach(int pin, int min, int max) { timer16_Sequence_t timer; if (this->servoIndex < MAX_SERVOS) { pinMode(pin, OUTPUT); // set servo pin to output servos[this->servoIndex].Pin.nbr = pin; // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128 this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS this->max = (MAX_PULSE_WIDTH - max)/4; // initialize the timer if it has not already been initialized timer = SERVO_INDEX_TO_TIMER(servoIndex); if (isTimerActive(timer) == false) { initISR(timer); } servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive } return this->servoIndex; } void Servo::detach() { timer16_Sequence_t timer; servos[this->servoIndex].Pin.isActive = false; timer = SERVO_INDEX_TO_TIMER(servoIndex); if(isTimerActive(timer) == false) { finISR(timer); } } void Servo::write(int value) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) if (value < MIN_PULSE_WIDTH) { if (value < 0) value = 0; else if (value > 180) value = 180; value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); } writeMicroseconds(value); } void Servo::writeMicroseconds(int value) { // calculate and store the values for the given channel byte channel = this->servoIndex; if( (channel < MAX_SERVOS) ) // ensure channel is valid { if (value < SERVO_MIN()) // ensure pulse width is valid value = SERVO_MIN(); else if (value > SERVO_MAX()) value = SERVO_MAX(); value = value - TRIM_DURATION; value = usToTicks(value); // convert to ticks after compensating for interrupt overhead servos[channel].ticks = value; } } int Servo::read() // return the value as degrees { return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); } int Servo::readMicroseconds() { unsigned int pulsewidth; if (this->servoIndex != INVALID_SERVO) pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION; else pulsewidth = 0; return pulsewidth; } bool Servo::attached() { return servos[this->servoIndex].Pin.isActive; } #endif // ARDUINO_ARCH_SAM