/* Copyright (c) 2011 Arduino. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "Arduino.h" #include "wiring_private.h" #include "wiring_pulse.h" /* Measures the length (in microseconds) of a pulse on the pin; state is HIGH * or LOW, the type of pulse to measure. Works on pulses from 2-3 microseconds * to 3 minutes in length, but must be called at least a few dozen microseconds * before the start of the pulse. */ extern uint32_t pulseIn( uint32_t pin, uint32_t state, uint32_t timeout ) { // cache the port and bit of the pin in order to speed up the // pulse width measuring loop and achieve finer resolution. calling // digitalRead() instead yields much coarser resolution. PinDescription p = g_APinDescription[pin]; uint32_t width = 0; // keep initialization out of time critical area // convert the timeout from microseconds to a number of times through // the initial loop; it takes 22 clock cycles per iteration. uint32_t numloops = 0; uint32_t maxloops = microsecondsToClockCycles(timeout) / 22; // wait for any previous pulse to end while (digitalRead(pin) == state) if (numloops++ == maxloops) return 0; // wait for the pulse to start while (digitalRead(pin) != state) if (numloops++ == maxloops) return 0; // wait for the pulse to stop while (digitalRead(pin) == state) { if (numloops++ == maxloops) return 0; width++; } // convert the reading to microseconds. The loop has been determined // to be 52 clock cycles long and have about 16 clocks between the edge // and the start of the loop. There will be some error introduced by // the interrupt handlers. return clockCyclesToMicroseconds(width * 52 + 16); }