/** * @file * * 6LowPAN output for IPv6. Uses ND tables for link-layer addressing. Fragments packets to 6LowPAN units. * * This implementation aims to conform to IEEE 802.15.4(-2015), RFC 4944 and RFC 6282. * @todo: RFC 6775. */ /* * Copyright (c) 2015 Inico Technologies Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Ivan Delamer * * * Please coordinate changes and requests with Ivan Delamer * */ /** * @defgroup sixlowpan 6LoWPAN (RFC4944) * @ingroup netifs * 6LowPAN netif implementation */ #include "netif/lowpan6.h" #if LWIP_IPV6 #include "lwip/ip.h" #include "lwip/pbuf.h" #include "lwip/ip_addr.h" #include "lwip/netif.h" #include "lwip/nd6.h" #include "lwip/mem.h" #include "lwip/udp.h" #include "lwip/tcpip.h" #include "lwip/snmp.h" #include "netif/ieee802154.h" #include #if LWIP_6LOWPAN_802154_HW_CRC #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) 0 #else #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) LWIP_6LOWPAN_CALC_CRC(buf, len) #endif /** This is a helper struct for reassembly of fragments * (IEEE 802.15.4 limits to 127 bytes) */ struct lowpan6_reass_helper { struct lowpan6_reass_helper *next_packet; struct pbuf *reass; struct pbuf *frags; u8_t timer; struct lowpan6_link_addr sender_addr; u16_t datagram_size; u16_t datagram_tag; }; /** This struct keeps track of per-netif state */ struct lowpan6_ieee802154_data { /** fragment reassembly list */ struct lowpan6_reass_helper *reass_list; #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 /** address context for compression */ ip6_addr_t lowpan6_context[LWIP_6LOWPAN_NUM_CONTEXTS]; #endif /** Datagram Tag for fragmentation */ u16_t tx_datagram_tag; /** local PAN ID for IEEE 802.15.4 header */ u16_t ieee_802154_pan_id; /** Sequence Number for IEEE 802.15.4 transmission */ u8_t tx_frame_seq_num; }; /* Maximum frame size is 127 bytes minus CRC size */ #define LOWPAN6_MAX_PAYLOAD (127 - 2) /** Currently, this state is global, since there's only one 6LoWPAN netif */ static struct lowpan6_ieee802154_data lowpan6_data; #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 #define LWIP_6LOWPAN_CONTEXTS(netif) lowpan6_data.lowpan6_context #else #define LWIP_6LOWPAN_CONTEXTS(netif) NULL #endif static const struct lowpan6_link_addr ieee_802154_broadcast = {2, {0xff, 0xff}}; #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS static struct lowpan6_link_addr short_mac_addr = {2, {0, 0}}; #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ /* IEEE 802.15.4 specific functions: */ /** Write the IEEE 802.15.4 header that encapsulates the 6LoWPAN frame. * Src and dst PAN IDs are filled with the ID set by @ref lowpan6_set_pan_id. * * Since the length is variable: * @returns the header length */ static u8_t lowpan6_write_iee802154_header(struct ieee_802154_hdr *hdr, const struct lowpan6_link_addr *src, const struct lowpan6_link_addr *dst) { u8_t ieee_header_len; u8_t *buffer; u8_t i; u16_t fc; fc = IEEE_802154_FC_FT_DATA; /* send data packet (2003 frame version) */ fc |= IEEE_802154_FC_PANID_COMPR; /* set PAN ID compression, for now src and dst PANs are equal */ if (dst != &ieee_802154_broadcast) { fc |= IEEE_802154_FC_ACK_REQ; /* data packet, no broadcast: ack required. */ } if (dst->addr_len == 2) { fc |= IEEE_802154_FC_DST_ADDR_MODE_SHORT; } else { LWIP_ASSERT("invalid dst address length", dst->addr_len == 8); fc |= IEEE_802154_FC_DST_ADDR_MODE_EXT; } if (src->addr_len == 2) { fc |= IEEE_802154_FC_SRC_ADDR_MODE_SHORT; } else { LWIP_ASSERT("invalid src address length", src->addr_len == 8); fc |= IEEE_802154_FC_SRC_ADDR_MODE_EXT; } hdr->frame_control = fc; hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; hdr->destination_pan_id = lowpan6_data.ieee_802154_pan_id; /* pan id */ buffer = (u8_t *)hdr; ieee_header_len = 5; i = dst->addr_len; /* reverse memcpy of dst addr */ while (i-- > 0) { buffer[ieee_header_len++] = dst->addr[i]; } /* Source PAN ID skipped due to PAN ID Compression */ i = src->addr_len; /* reverse memcpy of src addr */ while (i-- > 0) { buffer[ieee_header_len++] = src->addr[i]; } return ieee_header_len; } /** Parse the IEEE 802.15.4 header from a pbuf. * If successful, the header is hidden from the pbuf. * * PAN IDs and seuqence number are not checked * * @param p input pbuf, p->payload pointing at the IEEE 802.15.4 header * @param src pointer to source address filled from the header * @param dest pointer to destination address filled from the header * @returns ERR_OK if successful */ static err_t lowpan6_parse_iee802154_header(struct pbuf *p, struct lowpan6_link_addr *src, struct lowpan6_link_addr *dest) { u8_t *puc; s8_t i; u16_t frame_control, addr_mode; u16_t datagram_offset; /* Parse IEEE 802.15.4 header */ puc = (u8_t *)p->payload; frame_control = puc[0] | (puc[1] << 8); datagram_offset = 2; if (frame_control & IEEE_802154_FC_SEQNO_SUPPR) { if (IEEE_802154_FC_FRAME_VERSION_GET(frame_control) <= 1) { /* sequence number suppressed, this is not valid for versions 0/1 */ return ERR_VAL; } } else { datagram_offset++; } datagram_offset += 2; /* Skip destination PAN ID */ addr_mode = frame_control & IEEE_802154_FC_DST_ADDR_MODE_MASK; if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_EXT) { /* extended address (64 bit) */ dest->addr_len = 8; /* reverse memcpy: */ for (i = 0; i < 8; i++) { dest->addr[i] = puc[datagram_offset + 7 - i]; } datagram_offset += 8; } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { /* short address (16 bit) */ dest->addr_len = 2; /* reverse memcpy: */ dest->addr[0] = puc[datagram_offset + 1]; dest->addr[1] = puc[datagram_offset]; datagram_offset += 2; } else { /* unsupported address mode (do we need "no address"?) */ return ERR_VAL; } if (!(frame_control & IEEE_802154_FC_PANID_COMPR)) { /* No PAN ID compression, skip source PAN ID */ datagram_offset += 2; } addr_mode = frame_control & IEEE_802154_FC_SRC_ADDR_MODE_MASK; if (addr_mode == IEEE_802154_FC_SRC_ADDR_MODE_EXT) { /* extended address (64 bit) */ src->addr_len = 8; /* reverse memcpy: */ for (i = 0; i < 8; i++) { src->addr[i] = puc[datagram_offset + 7 - i]; } datagram_offset += 8; } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { /* short address (16 bit) */ src->addr_len = 2; src->addr[0] = puc[datagram_offset + 1]; src->addr[1] = puc[datagram_offset]; datagram_offset += 2; } else { /* unsupported address mode (do we need "no address"?) */ return ERR_VAL; } /* hide IEEE802.15.4 header. */ if (pbuf_remove_header(p, datagram_offset)) { return ERR_VAL; } return ERR_OK; } /** Calculate the 16-bit CRC as required by IEEE 802.15.4 */ u16_t lowpan6_calc_crc(const void* buf, u16_t len) { #define CCITT_POLY_16 0x8408U u16_t i; u8_t b; u16_t crc = 0; const u8_t* p = (const u8_t*)buf; for (i = 0; i < len; i++) { u8_t data = *p; for (b = 0U; b < 8U; b++) { if (((data ^ crc) & 1) != 0) { crc = (u16_t)((crc >> 1) ^ CCITT_POLY_16); } else { crc = (u16_t)(crc >> 1); } data = (u8_t)(data >> 1); } p++; } return crc; } /* Fragmentation specific functions: */ static void free_reass_datagram(struct lowpan6_reass_helper *lrh) { if (lrh->reass) { pbuf_free(lrh->reass); } if (lrh->frags) { pbuf_free(lrh->frags); } mem_free(lrh); } /** * Removes a datagram from the reassembly queue. **/ static void dequeue_datagram(struct lowpan6_reass_helper *lrh, struct lowpan6_reass_helper *prev) { if (lowpan6_data.reass_list == lrh) { lowpan6_data.reass_list = lowpan6_data.reass_list->next_packet; } else { /* it wasn't the first, so it must have a valid 'prev' */ LWIP_ASSERT("sanity check linked list", prev != NULL); prev->next_packet = lrh->next_packet; } } /** * Periodic timer for 6LowPAN functions: * * - Remove incomplete/old packets */ void lowpan6_tmr(void) { struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; lrh = lowpan6_data.reass_list; while (lrh != NULL) { lrh_next = lrh->next_packet; if ((--lrh->timer) == 0) { dequeue_datagram(lrh, lrh_prev); free_reass_datagram(lrh); } else { lrh_prev = lrh; } lrh = lrh_next; } } /* * Encapsulates data into IEEE 802.15.4 frames. * Fragments an IPv6 datagram into 6LowPAN units, which fit into IEEE 802.15.4 frames. * If configured, will compress IPv6 and or UDP headers. * */ static err_t lowpan6_frag(struct netif *netif, struct pbuf *p, const struct lowpan6_link_addr *src, const struct lowpan6_link_addr *dst) { struct pbuf *p_frag; u16_t frag_len, remaining_len, max_data_len; u8_t *buffer; u8_t ieee_header_len; u8_t lowpan6_header_len; u8_t hidden_header_len; u16_t crc; u16_t datagram_offset; err_t err = ERR_IF; LWIP_ASSERT("lowpan6_frag: netif->linkoutput not set", netif->linkoutput != NULL); /* We'll use a dedicated pbuf for building 6LowPAN fragments. */ p_frag = pbuf_alloc(PBUF_RAW, 127, PBUF_RAM); if (p_frag == NULL) { MIB2_STATS_NETIF_INC(netif, ifoutdiscards); return ERR_MEM; } LWIP_ASSERT("this needs a pbuf in one piece", p_frag->len == p_frag->tot_len); /* Write IEEE 802.15.4 header. */ buffer = (u8_t *)p_frag->payload; ieee_header_len = lowpan6_write_iee802154_header((struct ieee_802154_hdr *)buffer, src, dst); LWIP_ASSERT("ieee_header_len < p_frag->len", ieee_header_len < p_frag->len); #if LWIP_6LOWPAN_IPHC /* Perform 6LowPAN IPv6 header compression according to RFC 6282 */ /* do the header compression (this does NOT copy any non-compressed data) */ err = lowpan6_compress_headers(netif, (u8_t *)p->payload, p->len, &buffer[ieee_header_len], p_frag->len - ieee_header_len, &lowpan6_header_len, &hidden_header_len, LWIP_6LOWPAN_CONTEXTS(netif), src, dst); if (err != ERR_OK) { MIB2_STATS_NETIF_INC(netif, ifoutdiscards); pbuf_free(p_frag); return err; } pbuf_remove_header(p, hidden_header_len); #else /* LWIP_6LOWPAN_IPHC */ /* Send uncompressed IPv6 header with appropriate dispatch byte. */ lowpan6_header_len = 1; buffer[ieee_header_len] = 0x41; /* IPv6 dispatch */ #endif /* LWIP_6LOWPAN_IPHC */ /* Calculate remaining packet length */ remaining_len = p->tot_len; if (remaining_len > 0x7FF) { MIB2_STATS_NETIF_INC(netif, ifoutdiscards); /* datagram_size must fit into 11 bit */ pbuf_free(p_frag); return ERR_VAL; } /* Fragment, or 1 packet? */ max_data_len = LOWPAN6_MAX_PAYLOAD - ieee_header_len - lowpan6_header_len; if (remaining_len > max_data_len) { u16_t data_len; /* We must move the 6LowPAN header to make room for the FRAG header. */ memmove(&buffer[ieee_header_len + 4], &buffer[ieee_header_len], lowpan6_header_len); /* Now we need to fragment the packet. FRAG1 header first */ buffer[ieee_header_len] = 0xc0 | (((p->tot_len + hidden_header_len) >> 8) & 0x7); buffer[ieee_header_len + 1] = (p->tot_len + hidden_header_len) & 0xff; lowpan6_data.tx_datagram_tag++; buffer[ieee_header_len + 2] = (lowpan6_data.tx_datagram_tag >> 8) & 0xff; buffer[ieee_header_len + 3] = lowpan6_data.tx_datagram_tag & 0xff; /* Fragment follows. */ data_len = (max_data_len - 4) & 0xf8; frag_len = data_len + lowpan6_header_len; pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len + 4, frag_len - lowpan6_header_len, 0); remaining_len -= frag_len - lowpan6_header_len; /* datagram offset holds the offset before compression */ datagram_offset = frag_len - lowpan6_header_len + hidden_header_len; LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); /* Calculate frame length */ p_frag->len = p_frag->tot_len = ieee_header_len + 4 + frag_len + 2; /* add 2 bytes for crc*/ /* 2 bytes CRC */ crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); /* send the packet */ MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); err = netif->linkoutput(netif, p_frag); while ((remaining_len > 0) && (err == ERR_OK)) { struct ieee_802154_hdr *hdr = (struct ieee_802154_hdr *)buffer; /* new frame, new seq num for ACK */ hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; buffer[ieee_header_len] |= 0x20; /* Change FRAG1 to FRAGN */ LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); buffer[ieee_header_len + 4] = (u8_t)(datagram_offset >> 3); /* datagram offset in FRAGN header (datagram_offset is max. 11 bit) */ frag_len = (127 - ieee_header_len - 5 - 2) & 0xf8; if (frag_len > remaining_len) { frag_len = remaining_len; } pbuf_copy_partial(p, buffer + ieee_header_len + 5, frag_len, p->tot_len - remaining_len); remaining_len -= frag_len; datagram_offset += frag_len; /* Calculate frame length */ p_frag->len = p_frag->tot_len = frag_len + 5 + ieee_header_len + 2; /* 2 bytes CRC */ crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); /* send the packet */ MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); err = netif->linkoutput(netif, p_frag); } } else { /* It fits in one frame. */ frag_len = remaining_len; /* Copy IPv6 packet */ pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len, frag_len, 0); remaining_len = 0; /* Calculate frame length */ p_frag->len = p_frag->tot_len = frag_len + lowpan6_header_len + ieee_header_len + 2; LWIP_ASSERT("", p_frag->len <= 127); /* 2 bytes CRC */ crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); /* send the packet */ MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); err = netif->linkoutput(netif, p_frag); } pbuf_free(p_frag); return err; } /** * @ingroup sixlowpan * Set context */ err_t lowpan6_set_context(u8_t idx, const ip6_addr_t *context) { #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 if (idx >= LWIP_6LOWPAN_NUM_CONTEXTS) { return ERR_ARG; } IP6_ADDR_ZONECHECK(context); ip6_addr_set(&lowpan6_data.lowpan6_context[idx], context); return ERR_OK; #else LWIP_UNUSED_ARG(idx); LWIP_UNUSED_ARG(context); return ERR_ARG; #endif } #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS /** * @ingroup sixlowpan * Set short address */ err_t lowpan6_set_short_addr(u8_t addr_high, u8_t addr_low) { short_mac_addr.addr[0] = addr_high; short_mac_addr.addr[1] = addr_low; return ERR_OK; } #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ /* Create IEEE 802.15.4 address from netif address */ static err_t lowpan6_hwaddr_to_addr(struct netif *netif, struct lowpan6_link_addr *addr) { addr->addr_len = 8; if (netif->hwaddr_len == 8) { LWIP_ERROR("NETIF_MAX_HWADDR_LEN >= 8 required", sizeof(netif->hwaddr) >= 8, return ERR_VAL;); SMEMCPY(addr->addr, netif->hwaddr, 8); } else if (netif->hwaddr_len == 6) { /* Copy from MAC-48 */ SMEMCPY(addr->addr, netif->hwaddr, 3); addr->addr[3] = addr->addr[4] = 0xff; SMEMCPY(&addr->addr[5], &netif->hwaddr[3], 3); } else { /* Invalid address length, don't know how to convert this */ return ERR_VAL; } return ERR_OK; } /** * @ingroup sixlowpan * Resolve and fill-in IEEE 802.15.4 address header for outgoing IPv6 packet. * * Perform Header Compression and fragment if necessary. * * @param netif The lwIP network interface which the IP packet will be sent on. * @param q The pbuf(s) containing the IP packet to be sent. * @param ip6addr The IP address of the packet destination. * * @return err_t */ err_t lowpan6_output(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr) { err_t result; const u8_t *hwaddr; struct lowpan6_link_addr src, dest; #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS ip6_addr_t ip6_src; struct ip6_hdr *ip6_hdr; #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS /* Check if we can compress source address (use aligned copy) */ ip6_hdr = (struct ip6_hdr *)q->payload; ip6_addr_copy_from_packed(ip6_src, ip6_hdr->src); ip6_addr_assign_zone(&ip6_src, IP6_UNICAST, netif); if (lowpan6_get_address_mode(&ip6_src, &short_mac_addr) == 3) { src.addr_len = 2; src.addr[0] = short_mac_addr.addr[0]; src.addr[1] = short_mac_addr.addr[1]; } else #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ { result = lowpan6_hwaddr_to_addr(netif, &src); if (result != ERR_OK) { MIB2_STATS_NETIF_INC(netif, ifoutdiscards); return result; } } /* multicast destination IP address? */ if (ip6_addr_ismulticast(ip6addr)) { MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts); /* We need to send to the broadcast address.*/ return lowpan6_frag(netif, q, &src, &ieee_802154_broadcast); } /* We have a unicast destination IP address */ /* @todo anycast? */ #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS if (src.addr_len == 2) { /* If source address was compressable to short_mac_addr, and dest has same subnet and * is also compressable to 2-bytes, assume we can infer dest as a short address too. */ dest.addr_len = 2; dest.addr[0] = ((u8_t *)q->payload)[38]; dest.addr[1] = ((u8_t *)q->payload)[39]; if ((src.addr_len == 2) && (ip6_addr_netcmp_zoneless(&ip6_hdr->src, &ip6_hdr->dest)) && (lowpan6_get_address_mode(ip6addr, &dest) == 3)) { MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); return lowpan6_frag(netif, q, &src, &dest); } } #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ /* Ask ND6 what to do with the packet. */ result = nd6_get_next_hop_addr_or_queue(netif, q, ip6addr, &hwaddr); if (result != ERR_OK) { MIB2_STATS_NETIF_INC(netif, ifoutdiscards); return result; } /* If no hardware address is returned, nd6 has queued the packet for later. */ if (hwaddr == NULL) { return ERR_OK; } /* Send out the packet using the returned hardware address. */ dest.addr_len = netif->hwaddr_len; /* XXX: Inferring the length of the source address from the destination address * is not correct for IEEE 802.15.4, but currently we don't get this information * from the neighbor cache */ SMEMCPY(dest.addr, hwaddr, netif->hwaddr_len); MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); return lowpan6_frag(netif, q, &src, &dest); } /** * @ingroup sixlowpan * NETIF input function: don't free the input pbuf when returning != ERR_OK! */ err_t lowpan6_input(struct pbuf *p, struct netif *netif) { u8_t *puc, b; s8_t i; struct lowpan6_link_addr src, dest; u16_t datagram_size = 0; u16_t datagram_offset, datagram_tag; struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; if (p == NULL) { return ERR_OK; } MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len); if (p->len != p->tot_len) { /* for now, this needs a pbuf in one piece */ goto lowpan6_input_discard; } if (lowpan6_parse_iee802154_header(p, &src, &dest) != ERR_OK) { goto lowpan6_input_discard; } /* Check dispatch. */ puc = (u8_t *)p->payload; b = *puc; if ((b & 0xf8) == 0xc0) { /* FRAG1 dispatch. add this packet to reassembly list. */ datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; /* check for duplicate */ lrh = lowpan6_data.reass_list; while (lrh != NULL) { uint8_t discard = 0; lrh_next = lrh->next_packet; if ((lrh->sender_addr.addr_len == src.addr_len) && (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0)) { /* address match with packet in reassembly. */ if ((datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) { /* duplicate fragment. */ goto lowpan6_input_discard; } else { /* We are receiving the start of a new datagram. Discard old one (incomplete). */ discard = 1; } } if (discard) { dequeue_datagram(lrh, lrh_prev); free_reass_datagram(lrh); } else { lrh_prev = lrh; } /* Check next datagram in queue. */ lrh = lrh_next; } pbuf_remove_header(p, 4); /* hide frag1 dispatch */ lrh = (struct lowpan6_reass_helper *) mem_malloc(sizeof(struct lowpan6_reass_helper)); if (lrh == NULL) { goto lowpan6_input_discard; } lrh->sender_addr.addr_len = src.addr_len; for (i = 0; i < src.addr_len; i++) { lrh->sender_addr.addr[i] = src.addr[i]; } lrh->datagram_size = datagram_size; lrh->datagram_tag = datagram_tag; lrh->frags = NULL; if (*(u8_t *)p->payload == 0x41) { /* This is a complete IPv6 packet, just skip dispatch byte. */ pbuf_remove_header(p, 1); /* hide dispatch byte. */ lrh->reass = p; } else if ((*(u8_t *)p->payload & 0xe0 ) == 0x60) { lrh->reass = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); if (lrh->reass == NULL) { /* decompression failed */ mem_free(lrh); goto lowpan6_input_discard; } } /* TODO: handle the case where we already have FRAGN received */ lrh->next_packet = lowpan6_data.reass_list; lrh->timer = 2; lowpan6_data.reass_list = lrh; return ERR_OK; } else if ((b & 0xf8) == 0xe0) { /* FRAGN dispatch, find packet being reassembled. */ datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; datagram_offset = (u16_t)puc[4] << 3; pbuf_remove_header(p, 4); /* hide frag1 dispatch but keep datagram offset for reassembly */ for (lrh = lowpan6_data.reass_list; lrh != NULL; lrh_prev = lrh, lrh = lrh->next_packet) { if ((lrh->sender_addr.addr_len == src.addr_len) && (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0) && (datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) { break; } } if (lrh == NULL) { /* rogue fragment */ goto lowpan6_input_discard; } /* Insert new pbuf into list of fragments. Each fragment is a pbuf, this only works for unchained pbufs. */ LWIP_ASSERT("p->next == NULL", p->next == NULL); if (lrh->reass != NULL) { /* FRAG1 already received, check this offset against first len */ if (datagram_offset < lrh->reass->len) { /* fragment overlap, discard old fragments */ dequeue_datagram(lrh, lrh_prev); free_reass_datagram(lrh); goto lowpan6_input_discard; } } if (lrh->frags == NULL) { /* first FRAGN */ lrh->frags = p; } else { /* find the correct place to insert */ struct pbuf *q, *last; u16_t new_frag_len = p->len - 1; /* p->len includes datagram_offset byte */ for (q = lrh->frags, last = NULL; q != NULL; last = q, q = q->next) { u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; u16_t q_frag_len = q->len - 1; if (datagram_offset < q_datagram_offset) { if (datagram_offset + new_frag_len > q_datagram_offset) { /* overlap, discard old fragments */ dequeue_datagram(lrh, lrh_prev); free_reass_datagram(lrh); goto lowpan6_input_discard; } /* insert here */ break; } else if (datagram_offset == q_datagram_offset) { if (q_frag_len != new_frag_len) { /* fragment mismatch, discard old fragments */ dequeue_datagram(lrh, lrh_prev); free_reass_datagram(lrh); goto lowpan6_input_discard; } /* duplicate, ignore */ pbuf_free(p); return ERR_OK; } } /* insert fragment */ if (last == NULL) { lrh->frags = p; } else { last->next = p; p->next = q; } } /* check if all fragments were received */ if (lrh->reass) { u16_t offset = lrh->reass->len; struct pbuf *q; for (q = lrh->frags; q != NULL; q = q->next) { u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; if (q_datagram_offset != offset) { /* not complete, wait for more fragments */ return ERR_OK; } offset += q->len - 1; } if (offset == datagram_size) { /* all fragments received, combine pbufs */ u16_t datagram_left = datagram_size - lrh->reass->len; for (q = lrh->frags; q != NULL; q = q->next) { /* hide datagram_offset byte now */ pbuf_remove_header(q, 1); q->tot_len = datagram_left; datagram_left -= q->len; } LWIP_ASSERT("datagram_left == 0", datagram_left == 0); q = lrh->reass; q->tot_len = datagram_size; q->next = lrh->frags; lrh->frags = NULL; lrh->reass = NULL; dequeue_datagram(lrh, lrh_prev); mem_free(lrh); /* @todo: distinguish unicast/multicast */ MIB2_STATS_NETIF_INC(netif, ifinucastpkts); return ip6_input(q, netif); } } /* pbuf enqueued, waiting for more fragments */ return ERR_OK; } else { if (b == 0x41) { /* This is a complete IPv6 packet, just skip dispatch byte. */ pbuf_remove_header(p, 1); /* hide dispatch byte. */ } else if ((b & 0xe0 ) == 0x60) { /* IPv6 headers are compressed using IPHC. */ p = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); if (p == NULL) { MIB2_STATS_NETIF_INC(netif, ifindiscards); return ERR_OK; } } else { goto lowpan6_input_discard; } /* @todo: distinguish unicast/multicast */ MIB2_STATS_NETIF_INC(netif, ifinucastpkts); return ip6_input(p, netif); } lowpan6_input_discard: MIB2_STATS_NETIF_INC(netif, ifindiscards); pbuf_free(p); /* always return ERR_OK here to prevent the caller freeing the pbuf */ return ERR_OK; } /** * @ingroup sixlowpan */ err_t lowpan6_if_init(struct netif *netif) { netif->name[0] = 'L'; netif->name[1] = '6'; netif->output_ip6 = lowpan6_output; MIB2_INIT_NETIF(netif, snmp_ifType_other, 0); /* maximum transfer unit */ netif->mtu = 1280; /* broadcast capability */ netif->flags = NETIF_FLAG_BROADCAST /* | NETIF_FLAG_LOWPAN6 */; return ERR_OK; } /** * @ingroup sixlowpan * Set PAN ID */ err_t lowpan6_set_pan_id(u16_t pan_id) { lowpan6_data.ieee_802154_pan_id = pan_id; return ERR_OK; } #if !NO_SYS /** * @ingroup sixlowpan * Pass a received packet to tcpip_thread for input processing * * @param p the received packet, p->payload pointing to the * IEEE 802.15.4 header. * @param inp the network interface on which the packet was received */ err_t tcpip_6lowpan_input(struct pbuf *p, struct netif *inp) { return tcpip_inpkt(p, inp, lowpan6_input); } #endif /* !NO_SYS */ #endif /* LWIP_IPV6 */