/** * @file * Management Information Base II (RFC1213) IP objects and functions. */ /* * Copyright (c) 2006 Axon Digital Design B.V., The Netherlands. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * Author: Dirk Ziegelmeier * Christiaan Simons */ #include "lwip/snmp.h" #include "lwip/apps/snmp.h" #include "lwip/apps/snmp_core.h" #include "lwip/apps/snmp_mib2.h" #include "lwip/apps/snmp_table.h" #include "lwip/apps/snmp_scalar.h" #include "lwip/stats.h" #include "lwip/netif.h" #include "lwip/ip.h" #include "lwip/etharp.h" #if LWIP_SNMP && SNMP_LWIP_MIB2 #if SNMP_USE_NETCONN #define SYNC_NODE_NAME(node_name) node_name ## _synced #define CREATE_LWIP_SYNC_NODE(oid, node_name) \ static const struct snmp_threadsync_node node_name ## _synced = SNMP_CREATE_THREAD_SYNC_NODE(oid, &node_name.node, &snmp_mib2_lwip_locks); #else #define SYNC_NODE_NAME(node_name) node_name #define CREATE_LWIP_SYNC_NODE(oid, node_name) #endif #if LWIP_IPV4 /* --- ip .1.3.6.1.2.1.4 ----------------------------------------------------- */ static s16_t ip_get_value(struct snmp_node_instance *instance, void *value) { s32_t *sint_ptr = (s32_t *)value; u32_t *uint_ptr = (u32_t *)value; switch (instance->node->oid) { case 1: /* ipForwarding */ #if IP_FORWARD /* forwarding */ *sint_ptr = 1; #else /* not-forwarding */ *sint_ptr = 2; #endif return sizeof(*sint_ptr); case 2: /* ipDefaultTTL */ *sint_ptr = IP_DEFAULT_TTL; return sizeof(*sint_ptr); case 3: /* ipInReceives */ *uint_ptr = STATS_GET(mib2.ipinreceives); return sizeof(*uint_ptr); case 4: /* ipInHdrErrors */ *uint_ptr = STATS_GET(mib2.ipinhdrerrors); return sizeof(*uint_ptr); case 5: /* ipInAddrErrors */ *uint_ptr = STATS_GET(mib2.ipinaddrerrors); return sizeof(*uint_ptr); case 6: /* ipForwDatagrams */ *uint_ptr = STATS_GET(mib2.ipforwdatagrams); return sizeof(*uint_ptr); case 7: /* ipInUnknownProtos */ *uint_ptr = STATS_GET(mib2.ipinunknownprotos); return sizeof(*uint_ptr); case 8: /* ipInDiscards */ *uint_ptr = STATS_GET(mib2.ipindiscards); return sizeof(*uint_ptr); case 9: /* ipInDelivers */ *uint_ptr = STATS_GET(mib2.ipindelivers); return sizeof(*uint_ptr); case 10: /* ipOutRequests */ *uint_ptr = STATS_GET(mib2.ipoutrequests); return sizeof(*uint_ptr); case 11: /* ipOutDiscards */ *uint_ptr = STATS_GET(mib2.ipoutdiscards); return sizeof(*uint_ptr); case 12: /* ipOutNoRoutes */ *uint_ptr = STATS_GET(mib2.ipoutnoroutes); return sizeof(*uint_ptr); case 13: /* ipReasmTimeout */ #if IP_REASSEMBLY *sint_ptr = IP_REASS_MAXAGE; #else *sint_ptr = 0; #endif return sizeof(*sint_ptr); case 14: /* ipReasmReqds */ *uint_ptr = STATS_GET(mib2.ipreasmreqds); return sizeof(*uint_ptr); case 15: /* ipReasmOKs */ *uint_ptr = STATS_GET(mib2.ipreasmoks); return sizeof(*uint_ptr); case 16: /* ipReasmFails */ *uint_ptr = STATS_GET(mib2.ipreasmfails); return sizeof(*uint_ptr); case 17: /* ipFragOKs */ *uint_ptr = STATS_GET(mib2.ipfragoks); return sizeof(*uint_ptr); case 18: /* ipFragFails */ *uint_ptr = STATS_GET(mib2.ipfragfails); return sizeof(*uint_ptr); case 19: /* ipFragCreates */ *uint_ptr = STATS_GET(mib2.ipfragcreates); return sizeof(*uint_ptr); case 23: /* ipRoutingDiscards: not supported -> always 0 */ *uint_ptr = 0; return sizeof(*uint_ptr); default: LWIP_DEBUGF(SNMP_MIB_DEBUG, ("ip_get_value(): unknown id: %"S32_F"\n", instance->node->oid)); break; } return 0; } /** * Test ip object value before setting. * * @param instance node instance * @param len return value space (in bytes) * @param value points to (varbind) space to copy value from. * * @note we allow set if the value matches the hardwired value, * otherwise return badvalue. */ static snmp_err_t ip_set_test(struct snmp_node_instance *instance, u16_t len, void *value) { snmp_err_t ret = SNMP_ERR_WRONGVALUE; s32_t *sint_ptr = (s32_t *)value; LWIP_UNUSED_ARG(len); switch (instance->node->oid) { case 1: /* ipForwarding */ #if IP_FORWARD /* forwarding */ if (*sint_ptr == 1) #else /* not-forwarding */ if (*sint_ptr == 2) #endif { ret = SNMP_ERR_NOERROR; } break; case 2: /* ipDefaultTTL */ if (*sint_ptr == IP_DEFAULT_TTL) { ret = SNMP_ERR_NOERROR; } break; default: LWIP_DEBUGF(SNMP_MIB_DEBUG, ("ip_set_test(): unknown id: %"S32_F"\n", instance->node->oid)); break; } return ret; } static snmp_err_t ip_set_value(struct snmp_node_instance *instance, u16_t len, void *value) { LWIP_UNUSED_ARG(instance); LWIP_UNUSED_ARG(len); LWIP_UNUSED_ARG(value); /* nothing to do here because in set_test we only accept values being the same as our own stored value -> no need to store anything */ return SNMP_ERR_NOERROR; } /* --- ipAddrTable --- */ /* list of allowed value ranges for incoming OID */ static const struct snmp_oid_range ip_AddrTable_oid_ranges[] = { { 0, 0xff }, /* IP A */ { 0, 0xff }, /* IP B */ { 0, 0xff }, /* IP C */ { 0, 0xff } /* IP D */ }; static snmp_err_t ip_AddrTable_get_cell_value_core(struct netif *netif, const u32_t *column, union snmp_variant_value *value, u32_t *value_len) { LWIP_UNUSED_ARG(value_len); switch (*column) { case 1: /* ipAdEntAddr */ value->u32 = netif_ip4_addr(netif)->addr; break; case 2: /* ipAdEntIfIndex */ value->u32 = netif_to_num(netif); break; case 3: /* ipAdEntNetMask */ value->u32 = netif_ip4_netmask(netif)->addr; break; case 4: /* ipAdEntBcastAddr */ /* lwIP oddity, there's no broadcast address in the netif we can rely on */ value->u32 = IPADDR_BROADCAST & 1; break; case 5: /* ipAdEntReasmMaxSize */ #if IP_REASSEMBLY /* @todo The theoretical maximum is IP_REASS_MAX_PBUFS * size of the pbufs, * but only if receiving one fragmented packet at a time. * The current solution is to calculate for 2 simultaneous packets... */ value->u32 = (IP_HLEN + ((IP_REASS_MAX_PBUFS / 2) * (PBUF_POOL_BUFSIZE - PBUF_LINK_ENCAPSULATION_HLEN - PBUF_LINK_HLEN - IP_HLEN))); #else /** @todo returning MTU would be a bad thing and returning a wild guess like '576' isn't good either */ value->u32 = 0; #endif break; default: return SNMP_ERR_NOSUCHINSTANCE; } return SNMP_ERR_NOERROR; } static snmp_err_t ip_AddrTable_get_cell_value(const u32_t *column, const u32_t *row_oid, u8_t row_oid_len, union snmp_variant_value *value, u32_t *value_len) { ip4_addr_t ip; struct netif *netif; /* check if incoming OID length and if values are in plausible range */ if (!snmp_oid_in_range(row_oid, row_oid_len, ip_AddrTable_oid_ranges, LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges))) { return SNMP_ERR_NOSUCHINSTANCE; } /* get IP from incoming OID */ snmp_oid_to_ip4(&row_oid[0], &ip); /* we know it succeeds because of oid_in_range check above */ /* find netif with requested ip */ NETIF_FOREACH(netif) { if (ip4_addr_cmp(&ip, netif_ip4_addr(netif))) { /* fill in object properties */ return ip_AddrTable_get_cell_value_core(netif, column, value, value_len); } } /* not found */ return SNMP_ERR_NOSUCHINSTANCE; } static snmp_err_t ip_AddrTable_get_next_cell_instance_and_value(const u32_t *column, struct snmp_obj_id *row_oid, union snmp_variant_value *value, u32_t *value_len) { struct netif *netif; struct snmp_next_oid_state state; u32_t result_temp[LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges)]; /* init struct to search next oid */ snmp_next_oid_init(&state, row_oid->id, row_oid->len, result_temp, LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges)); /* iterate over all possible OIDs to find the next one */ NETIF_FOREACH(netif) { u32_t test_oid[LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges)]; snmp_ip4_to_oid(netif_ip4_addr(netif), &test_oid[0]); /* check generated OID: is it a candidate for the next one? */ snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges), netif); } /* did we find a next one? */ if (state.status == SNMP_NEXT_OID_STATUS_SUCCESS) { snmp_oid_assign(row_oid, state.next_oid, state.next_oid_len); /* fill in object properties */ return ip_AddrTable_get_cell_value_core((struct netif *)state.reference, column, value, value_len); } /* not found */ return SNMP_ERR_NOSUCHINSTANCE; } /* --- ipRouteTable --- */ /* list of allowed value ranges for incoming OID */ static const struct snmp_oid_range ip_RouteTable_oid_ranges[] = { { 0, 0xff }, /* IP A */ { 0, 0xff }, /* IP B */ { 0, 0xff }, /* IP C */ { 0, 0xff }, /* IP D */ }; static snmp_err_t ip_RouteTable_get_cell_value_core(struct netif *netif, u8_t default_route, const u32_t *column, union snmp_variant_value *value, u32_t *value_len) { switch (*column) { case 1: /* ipRouteDest */ if (default_route) { /* default rte has 0.0.0.0 dest */ value->u32 = IP4_ADDR_ANY4->addr; } else { /* netifs have netaddress dest */ ip4_addr_t tmp; ip4_addr_get_network(&tmp, netif_ip4_addr(netif), netif_ip4_netmask(netif)); value->u32 = tmp.addr; } break; case 2: /* ipRouteIfIndex */ value->u32 = netif_to_num(netif); break; case 3: /* ipRouteMetric1 */ if (default_route) { value->s32 = 1; /* default */ } else { value->s32 = 0; /* normal */ } break; case 4: /* ipRouteMetric2 */ case 5: /* ipRouteMetric3 */ case 6: /* ipRouteMetric4 */ value->s32 = -1; /* none */ break; case 7: /* ipRouteNextHop */ if (default_route) { /* default rte: gateway */ value->u32 = netif_ip4_gw(netif)->addr; } else { /* other rtes: netif ip_addr */ value->u32 = netif_ip4_addr(netif)->addr; } break; case 8: /* ipRouteType */ if (default_route) { /* default rte is indirect */ value->u32 = 4; /* indirect */ } else { /* other rtes are direct */ value->u32 = 3; /* direct */ } break; case 9: /* ipRouteProto */ /* locally defined routes */ value->u32 = 2; /* local */ break; case 10: /* ipRouteAge */ /* @todo (sysuptime - timestamp last change) / 100 */ value->u32 = 0; break; case 11: /* ipRouteMask */ if (default_route) { /* default rte use 0.0.0.0 mask */ value->u32 = IP4_ADDR_ANY4->addr; } else { /* other rtes use netmask */ value->u32 = netif_ip4_netmask(netif)->addr; } break; case 12: /* ipRouteMetric5 */ value->s32 = -1; /* none */ break; case 13: /* ipRouteInfo */ value->const_ptr = snmp_zero_dot_zero.id; *value_len = snmp_zero_dot_zero.len * sizeof(u32_t); break; default: return SNMP_ERR_NOSUCHINSTANCE; } return SNMP_ERR_NOERROR; } static snmp_err_t ip_RouteTable_get_cell_value(const u32_t *column, const u32_t *row_oid, u8_t row_oid_len, union snmp_variant_value *value, u32_t *value_len) { ip4_addr_t test_ip; struct netif *netif; /* check if incoming OID length and if values are in plausible range */ if (!snmp_oid_in_range(row_oid, row_oid_len, ip_RouteTable_oid_ranges, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges))) { return SNMP_ERR_NOSUCHINSTANCE; } /* get IP and port from incoming OID */ snmp_oid_to_ip4(&row_oid[0], &test_ip); /* we know it succeeds because of oid_in_range check above */ /* default route is on default netif */ if (ip4_addr_isany_val(test_ip) && (netif_default != NULL)) { /* fill in object properties */ return ip_RouteTable_get_cell_value_core(netif_default, 1, column, value, value_len); } /* find netif with requested route */ NETIF_FOREACH(netif) { ip4_addr_t dst; ip4_addr_get_network(&dst, netif_ip4_addr(netif), netif_ip4_netmask(netif)); if (ip4_addr_cmp(&dst, &test_ip)) { /* fill in object properties */ return ip_RouteTable_get_cell_value_core(netif, 0, column, value, value_len); } } /* not found */ return SNMP_ERR_NOSUCHINSTANCE; } static snmp_err_t ip_RouteTable_get_next_cell_instance_and_value(const u32_t *column, struct snmp_obj_id *row_oid, union snmp_variant_value *value, u32_t *value_len) { struct netif *netif; struct snmp_next_oid_state state; u32_t result_temp[LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges)]; u32_t test_oid[LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges)]; /* init struct to search next oid */ snmp_next_oid_init(&state, row_oid->id, row_oid->len, result_temp, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges)); /* check default route */ if (netif_default != NULL) { snmp_ip4_to_oid(IP4_ADDR_ANY4, &test_oid[0]); snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges), netif_default); } /* iterate over all possible OIDs to find the next one */ NETIF_FOREACH(netif) { ip4_addr_t dst; ip4_addr_get_network(&dst, netif_ip4_addr(netif), netif_ip4_netmask(netif)); /* check generated OID: is it a candidate for the next one? */ if (!ip4_addr_isany_val(dst)) { snmp_ip4_to_oid(&dst, &test_oid[0]); snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges), netif); } } /* did we find a next one? */ if (state.status == SNMP_NEXT_OID_STATUS_SUCCESS) { ip4_addr_t dst; snmp_oid_to_ip4(&result_temp[0], &dst); snmp_oid_assign(row_oid, state.next_oid, state.next_oid_len); /* fill in object properties */ return ip_RouteTable_get_cell_value_core((struct netif *)state.reference, ip4_addr_isany_val(dst), column, value, value_len); } else { /* not found */ return SNMP_ERR_NOSUCHINSTANCE; } } #if LWIP_ARP && LWIP_IPV4 /* --- ipNetToMediaTable --- */ /* list of allowed value ranges for incoming OID */ static const struct snmp_oid_range ip_NetToMediaTable_oid_ranges[] = { { 1, 0xff }, /* IfIndex */ { 0, 0xff }, /* IP A */ { 0, 0xff }, /* IP B */ { 0, 0xff }, /* IP C */ { 0, 0xff } /* IP D */ }; static snmp_err_t ip_NetToMediaTable_get_cell_value_core(size_t arp_table_index, const u32_t *column, union snmp_variant_value *value, u32_t *value_len) { ip4_addr_t *ip; struct netif *netif; struct eth_addr *ethaddr; etharp_get_entry(arp_table_index, &ip, &netif, ðaddr); /* value */ switch (*column) { case 1: /* atIfIndex / ipNetToMediaIfIndex */ value->u32 = netif_to_num(netif); break; case 2: /* atPhysAddress / ipNetToMediaPhysAddress */ value->ptr = ethaddr; *value_len = sizeof(*ethaddr); break; case 3: /* atNetAddress / ipNetToMediaNetAddress */ value->u32 = ip->addr; break; case 4: /* ipNetToMediaType */ value->u32 = 3; /* dynamic*/ break; default: return SNMP_ERR_NOSUCHINSTANCE; } return SNMP_ERR_NOERROR; } static snmp_err_t ip_NetToMediaTable_get_cell_value(const u32_t *column, const u32_t *row_oid, u8_t row_oid_len, union snmp_variant_value *value, u32_t *value_len) { ip4_addr_t ip_in; u8_t netif_index; size_t i; /* check if incoming OID length and if values are in plausible range */ if (!snmp_oid_in_range(row_oid, row_oid_len, ip_NetToMediaTable_oid_ranges, LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges))) { return SNMP_ERR_NOSUCHINSTANCE; } /* get IP from incoming OID */ netif_index = (u8_t)row_oid[0]; snmp_oid_to_ip4(&row_oid[1], &ip_in); /* we know it succeeds because of oid_in_range check above */ /* find requested entry */ for (i = 0; i < ARP_TABLE_SIZE; i++) { ip4_addr_t *ip; struct netif *netif; struct eth_addr *ethaddr; if (etharp_get_entry(i, &ip, &netif, ðaddr)) { if ((netif_index == netif_to_num(netif)) && ip4_addr_cmp(&ip_in, ip)) { /* fill in object properties */ return ip_NetToMediaTable_get_cell_value_core(i, column, value, value_len); } } } /* not found */ return SNMP_ERR_NOSUCHINSTANCE; } static snmp_err_t ip_NetToMediaTable_get_next_cell_instance_and_value(const u32_t *column, struct snmp_obj_id *row_oid, union snmp_variant_value *value, u32_t *value_len) { size_t i; struct snmp_next_oid_state state; u32_t result_temp[LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges)]; /* init struct to search next oid */ snmp_next_oid_init(&state, row_oid->id, row_oid->len, result_temp, LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges)); /* iterate over all possible OIDs to find the next one */ for (i = 0; i < ARP_TABLE_SIZE; i++) { ip4_addr_t *ip; struct netif *netif; struct eth_addr *ethaddr; if (etharp_get_entry(i, &ip, &netif, ðaddr)) { u32_t test_oid[LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges)]; test_oid[0] = netif_to_num(netif); snmp_ip4_to_oid(ip, &test_oid[1]); /* check generated OID: is it a candidate for the next one? */ snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges), LWIP_PTR_NUMERIC_CAST(void *, i)); } } /* did we find a next one? */ if (state.status == SNMP_NEXT_OID_STATUS_SUCCESS) { snmp_oid_assign(row_oid, state.next_oid, state.next_oid_len); /* fill in object properties */ return ip_NetToMediaTable_get_cell_value_core(LWIP_PTR_NUMERIC_CAST(size_t, state.reference), column, value, value_len); } /* not found */ return SNMP_ERR_NOSUCHINSTANCE; } #endif /* LWIP_ARP && LWIP_IPV4 */ static const struct snmp_scalar_node ip_Forwarding = SNMP_SCALAR_CREATE_NODE(1, SNMP_NODE_INSTANCE_READ_WRITE, SNMP_ASN1_TYPE_INTEGER, ip_get_value, ip_set_test, ip_set_value); static const struct snmp_scalar_node ip_DefaultTTL = SNMP_SCALAR_CREATE_NODE(2, SNMP_NODE_INSTANCE_READ_WRITE, SNMP_ASN1_TYPE_INTEGER, ip_get_value, ip_set_test, ip_set_value); static const struct snmp_scalar_node ip_InReceives = SNMP_SCALAR_CREATE_NODE_READONLY(3, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_InHdrErrors = SNMP_SCALAR_CREATE_NODE_READONLY(4, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_InAddrErrors = SNMP_SCALAR_CREATE_NODE_READONLY(5, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_ForwDatagrams = SNMP_SCALAR_CREATE_NODE_READONLY(6, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_InUnknownProtos = SNMP_SCALAR_CREATE_NODE_READONLY(7, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_InDiscards = SNMP_SCALAR_CREATE_NODE_READONLY(8, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_InDelivers = SNMP_SCALAR_CREATE_NODE_READONLY(9, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_OutRequests = SNMP_SCALAR_CREATE_NODE_READONLY(10, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_OutDiscards = SNMP_SCALAR_CREATE_NODE_READONLY(11, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_OutNoRoutes = SNMP_SCALAR_CREATE_NODE_READONLY(12, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_ReasmTimeout = SNMP_SCALAR_CREATE_NODE_READONLY(13, SNMP_ASN1_TYPE_INTEGER, ip_get_value); static const struct snmp_scalar_node ip_ReasmReqds = SNMP_SCALAR_CREATE_NODE_READONLY(14, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_ReasmOKs = SNMP_SCALAR_CREATE_NODE_READONLY(15, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_ReasmFails = SNMP_SCALAR_CREATE_NODE_READONLY(16, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_FragOKs = SNMP_SCALAR_CREATE_NODE_READONLY(17, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_FragFails = SNMP_SCALAR_CREATE_NODE_READONLY(18, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_FragCreates = SNMP_SCALAR_CREATE_NODE_READONLY(19, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_scalar_node ip_RoutingDiscards = SNMP_SCALAR_CREATE_NODE_READONLY(23, SNMP_ASN1_TYPE_COUNTER, ip_get_value); static const struct snmp_table_simple_col_def ip_AddrTable_columns[] = { { 1, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntAddr */ { 2, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntIfIndex */ { 3, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntNetMask */ { 4, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntBcastAddr */ { 5, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 } /* ipAdEntReasmMaxSize */ }; static const struct snmp_table_simple_node ip_AddrTable = SNMP_TABLE_CREATE_SIMPLE(20, ip_AddrTable_columns, ip_AddrTable_get_cell_value, ip_AddrTable_get_next_cell_instance_and_value); static const struct snmp_table_simple_col_def ip_RouteTable_columns[] = { { 1, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteDest */ { 2, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteIfIndex */ { 3, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric1 */ { 4, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric2 */ { 5, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric3 */ { 6, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric4 */ { 7, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteNextHop */ { 8, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteType */ { 9, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteProto */ { 10, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteAge */ { 11, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteMask */ { 12, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric5 */ { 13, SNMP_ASN1_TYPE_OBJECT_ID, SNMP_VARIANT_VALUE_TYPE_PTR } /* ipRouteInfo */ }; static const struct snmp_table_simple_node ip_RouteTable = SNMP_TABLE_CREATE_SIMPLE(21, ip_RouteTable_columns, ip_RouteTable_get_cell_value, ip_RouteTable_get_next_cell_instance_and_value); #endif /* LWIP_IPV4 */ #if LWIP_ARP && LWIP_IPV4 static const struct snmp_table_simple_col_def ip_NetToMediaTable_columns[] = { { 1, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipNetToMediaIfIndex */ { 2, SNMP_ASN1_TYPE_OCTET_STRING, SNMP_VARIANT_VALUE_TYPE_PTR }, /* ipNetToMediaPhysAddress */ { 3, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipNetToMediaNetAddress */ { 4, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 } /* ipNetToMediaType */ }; static const struct snmp_table_simple_node ip_NetToMediaTable = SNMP_TABLE_CREATE_SIMPLE(22, ip_NetToMediaTable_columns, ip_NetToMediaTable_get_cell_value, ip_NetToMediaTable_get_next_cell_instance_and_value); #endif /* LWIP_ARP && LWIP_IPV4 */ #if LWIP_IPV4 /* the following nodes access variables in LWIP stack from SNMP worker thread and must therefore be synced to LWIP (TCPIP) thread */ CREATE_LWIP_SYNC_NODE( 1, ip_Forwarding) CREATE_LWIP_SYNC_NODE( 2, ip_DefaultTTL) CREATE_LWIP_SYNC_NODE( 3, ip_InReceives) CREATE_LWIP_SYNC_NODE( 4, ip_InHdrErrors) CREATE_LWIP_SYNC_NODE( 5, ip_InAddrErrors) CREATE_LWIP_SYNC_NODE( 6, ip_ForwDatagrams) CREATE_LWIP_SYNC_NODE( 7, ip_InUnknownProtos) CREATE_LWIP_SYNC_NODE( 8, ip_InDiscards) CREATE_LWIP_SYNC_NODE( 9, ip_InDelivers) CREATE_LWIP_SYNC_NODE(10, ip_OutRequests) CREATE_LWIP_SYNC_NODE(11, ip_OutDiscards) CREATE_LWIP_SYNC_NODE(12, ip_OutNoRoutes) CREATE_LWIP_SYNC_NODE(13, ip_ReasmTimeout) CREATE_LWIP_SYNC_NODE(14, ip_ReasmReqds) CREATE_LWIP_SYNC_NODE(15, ip_ReasmOKs) CREATE_LWIP_SYNC_NODE(15, ip_ReasmFails) CREATE_LWIP_SYNC_NODE(17, ip_FragOKs) CREATE_LWIP_SYNC_NODE(18, ip_FragFails) CREATE_LWIP_SYNC_NODE(19, ip_FragCreates) CREATE_LWIP_SYNC_NODE(20, ip_AddrTable) CREATE_LWIP_SYNC_NODE(21, ip_RouteTable) #if LWIP_ARP CREATE_LWIP_SYNC_NODE(22, ip_NetToMediaTable) #endif /* LWIP_ARP */ CREATE_LWIP_SYNC_NODE(23, ip_RoutingDiscards) static const struct snmp_node *const ip_nodes[] = { &SYNC_NODE_NAME(ip_Forwarding).node.node, &SYNC_NODE_NAME(ip_DefaultTTL).node.node, &SYNC_NODE_NAME(ip_InReceives).node.node, &SYNC_NODE_NAME(ip_InHdrErrors).node.node, &SYNC_NODE_NAME(ip_InAddrErrors).node.node, &SYNC_NODE_NAME(ip_ForwDatagrams).node.node, &SYNC_NODE_NAME(ip_InUnknownProtos).node.node, &SYNC_NODE_NAME(ip_InDiscards).node.node, &SYNC_NODE_NAME(ip_InDelivers).node.node, &SYNC_NODE_NAME(ip_OutRequests).node.node, &SYNC_NODE_NAME(ip_OutDiscards).node.node, &SYNC_NODE_NAME(ip_OutNoRoutes).node.node, &SYNC_NODE_NAME(ip_ReasmTimeout).node.node, &SYNC_NODE_NAME(ip_ReasmReqds).node.node, &SYNC_NODE_NAME(ip_ReasmOKs).node.node, &SYNC_NODE_NAME(ip_ReasmFails).node.node, &SYNC_NODE_NAME(ip_FragOKs).node.node, &SYNC_NODE_NAME(ip_FragFails).node.node, &SYNC_NODE_NAME(ip_FragCreates).node.node, &SYNC_NODE_NAME(ip_AddrTable).node.node, &SYNC_NODE_NAME(ip_RouteTable).node.node, #if LWIP_ARP &SYNC_NODE_NAME(ip_NetToMediaTable).node.node, #endif /* LWIP_ARP */ &SYNC_NODE_NAME(ip_RoutingDiscards).node.node }; const struct snmp_tree_node snmp_mib2_ip_root = SNMP_CREATE_TREE_NODE(4, ip_nodes); #endif /* LWIP_IPV4 */ /* --- at .1.3.6.1.2.1.3 ----------------------------------------------------- */ #if LWIP_ARP && LWIP_IPV4 /* at node table is a subset of ip_nettomedia table (same rows but less columns) */ static const struct snmp_table_simple_col_def at_Table_columns[] = { { 1, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* atIfIndex */ { 2, SNMP_ASN1_TYPE_OCTET_STRING, SNMP_VARIANT_VALUE_TYPE_PTR }, /* atPhysAddress */ { 3, SNMP_ASN1_TYPE_IPADDR, SNMP_VARIANT_VALUE_TYPE_U32 } /* atNetAddress */ }; static const struct snmp_table_simple_node at_Table = SNMP_TABLE_CREATE_SIMPLE(1, at_Table_columns, ip_NetToMediaTable_get_cell_value, ip_NetToMediaTable_get_next_cell_instance_and_value); /* the following nodes access variables in LWIP stack from SNMP worker thread and must therefore be synced to LWIP (TCPIP) thread */ CREATE_LWIP_SYNC_NODE(1, at_Table) static const struct snmp_node *const at_nodes[] = { &SYNC_NODE_NAME(at_Table).node.node }; const struct snmp_tree_node snmp_mib2_at_root = SNMP_CREATE_TREE_NODE(3, at_nodes); #endif /* LWIP_ARP && LWIP_IPV4 */ #endif /* LWIP_SNMP && SNMP_LWIP_MIB2 */