source: azure_iot_hub/trunk/wolfssl-3.15.7/wolfcrypt/src/hc128.c@ 388

Last change on this file since 388 was 388, checked in by coas-nagasima, 5 years ago

Azure IoT Hub Device C SDK を使ったサンプルの追加

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
  • Property svn:mime-type set to text/x-csrc
File size: 14.1 KB
Line 
1/* hc128.c
2 *
3 * Copyright (C) 2006-2017 wolfSSL Inc.
4 *
5 * This file is part of wolfSSL.
6 *
7 * wolfSSL is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * wolfSSL is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
20 */
21
22
23#ifdef HAVE_CONFIG_H
24 #include <config.h>
25#endif
26
27#include <wolfssl/wolfcrypt/settings.h>
28
29#ifdef HAVE_HC128
30
31#include <wolfssl/wolfcrypt/hc128.h>
32#include <wolfssl/wolfcrypt/error-crypt.h>
33#include <wolfssl/wolfcrypt/logging.h>
34#ifdef NO_INLINE
35 #include <wolfssl/wolfcrypt/hc128.h>
36 #include <wolfssl/wolfcrypt/misc.h>
37#else
38 #define WOLFSSL_MISC_INCLUDED
39 #include <wolfcrypt/src/misc.c>
40#endif
41
42
43#ifdef BIG_ENDIAN_ORDER
44 #define LITTLE32(x) ByteReverseWord32(x)
45#else
46 #define LITTLE32(x) (x)
47#endif
48
49
50/*h1 function*/
51#define h1(ctx, x, y) { \
52 byte a,c; \
53 a = (byte) (x); \
54 c = (byte) ((x) >> 16); \
55 y = (ctx->T[512+a])+(ctx->T[512+256+c]); \
56}
57
58/*h2 function*/
59#define h2(ctx, x, y) { \
60 byte a,c; \
61 a = (byte) (x); \
62 c = (byte) ((x) >> 16); \
63 y = (ctx->T[a])+(ctx->T[256+c]); \
64}
65
66/*one step of HC-128, update P and generate 32 bits keystream*/
67#define step_P(ctx,u,v,a,b,c,d,n){ \
68 word32 tem0,tem1,tem2,tem3; \
69 h1((ctx),(ctx->X[(d)]),tem3); \
70 tem0 = rotrFixed((ctx->T[(v)]),23); \
71 tem1 = rotrFixed((ctx->X[(c)]),10); \
72 tem2 = rotrFixed((ctx->X[(b)]),8); \
73 (ctx->T[(u)]) += tem2+(tem0 ^ tem1); \
74 (ctx->X[(a)]) = (ctx->T[(u)]); \
75 (n) = tem3 ^ (ctx->T[(u)]) ; \
76}
77
78/*one step of HC-128, update Q and generate 32 bits keystream*/
79#define step_Q(ctx,u,v,a,b,c,d,n){ \
80 word32 tem0,tem1,tem2,tem3; \
81 h2((ctx),(ctx->Y[(d)]),tem3); \
82 tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \
83 tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \
84 tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \
85 (ctx->T[(u)]) += tem2 + (tem0 ^ tem1); \
86 (ctx->Y[(a)]) = (ctx->T[(u)]); \
87 (n) = tem3 ^ (ctx->T[(u)]) ; \
88}
89
90/*16 steps of HC-128, generate 512 bits keystream*/
91static void generate_keystream(HC128* ctx, word32* keystream)
92{
93 word32 cc,dd;
94 cc = ctx->counter1024 & 0x1ff;
95 dd = (cc+16)&0x1ff;
96
97 if (ctx->counter1024 < 512)
98 {
99 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
100 step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]);
101 step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]);
102 step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]);
103 step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]);
104 step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]);
105 step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]);
106 step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]);
107 step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]);
108 step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]);
109 step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]);
110 step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]);
111 step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]);
112 step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]);
113 step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]);
114 step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]);
115 step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]);
116 }
117 else
118 {
119 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
120 step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]);
121 step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]);
122 step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]);
123 step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]);
124 step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]);
125 step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]);
126 step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]);
127 step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]);
128 step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]);
129 step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]);
130 step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]);
131 step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]);
132 step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]);
133 step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]);
134 step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]);
135 step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]);
136 }
137}
138
139
140/* The following defines the initialization functions */
141#define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3))
142#define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10))
143
144/*update table P*/
145#define update_P(ctx,u,v,a,b,c,d){ \
146 word32 tem0,tem1,tem2,tem3; \
147 tem0 = rotrFixed((ctx->T[(v)]),23); \
148 tem1 = rotrFixed((ctx->X[(c)]),10); \
149 tem2 = rotrFixed((ctx->X[(b)]),8); \
150 h1((ctx),(ctx->X[(d)]),tem3); \
151 (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
152 (ctx->X[(a)]) = (ctx->T[(u)]); \
153}
154
155/*update table Q*/
156#define update_Q(ctx,u,v,a,b,c,d){ \
157 word32 tem0,tem1,tem2,tem3; \
158 tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \
159 tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \
160 tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \
161 h2((ctx),(ctx->Y[(d)]),tem3); \
162 (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
163 (ctx->Y[(a)]) = (ctx->T[(u)]); \
164}
165
166/*16 steps of HC-128, without generating keystream, */
167/*but use the outputs to update P and Q*/
168static void setup_update(HC128* ctx) /*each time 16 steps*/
169{
170 word32 cc,dd;
171 cc = ctx->counter1024 & 0x1ff;
172 dd = (cc+16)&0x1ff;
173
174 if (ctx->counter1024 < 512)
175 {
176 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
177 update_P(ctx, cc+0, cc+1, 0, 6, 13, 4);
178 update_P(ctx, cc+1, cc+2, 1, 7, 14, 5);
179 update_P(ctx, cc+2, cc+3, 2, 8, 15, 6);
180 update_P(ctx, cc+3, cc+4, 3, 9, 0, 7);
181 update_P(ctx, cc+4, cc+5, 4, 10,1, 8);
182 update_P(ctx, cc+5, cc+6, 5, 11,2, 9);
183 update_P(ctx, cc+6, cc+7, 6, 12,3, 10);
184 update_P(ctx, cc+7, cc+8, 7, 13,4, 11);
185 update_P(ctx, cc+8, cc+9, 8, 14,5, 12);
186 update_P(ctx, cc+9, cc+10,9, 15,6, 13);
187 update_P(ctx, cc+10,cc+11,10,0, 7, 14);
188 update_P(ctx, cc+11,cc+12,11,1, 8, 15);
189 update_P(ctx, cc+12,cc+13,12,2, 9, 0);
190 update_P(ctx, cc+13,cc+14,13,3, 10, 1);
191 update_P(ctx, cc+14,cc+15,14,4, 11, 2);
192 update_P(ctx, cc+15,dd+0, 15,5, 12, 3);
193 }
194 else
195 {
196 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
197 update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4);
198 update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5);
199 update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6);
200 update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7);
201 update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8);
202 update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9);
203 update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10);
204 update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11);
205 update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12);
206 update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13);
207 update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14);
208 update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15);
209 update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0);
210 update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1);
211 update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2);
212 update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3);
213 }
214}
215
216
217/* for the 128-bit key: key[0]...key[15]
218* key[0] is the least significant byte of ctx->key[0] (K_0);
219* key[3] is the most significant byte of ctx->key[0] (K_0);
220* ...
221* key[12] is the least significant byte of ctx->key[3] (K_3)
222* key[15] is the most significant byte of ctx->key[3] (K_3)
223*
224* for the 128-bit iv: iv[0]...iv[15]
225* iv[0] is the least significant byte of ctx->iv[0] (IV_0);
226* iv[3] is the most significant byte of ctx->iv[0] (IV_0);
227* ...
228* iv[12] is the least significant byte of ctx->iv[3] (IV_3)
229* iv[15] is the most significant byte of ctx->iv[3] (IV_3)
230*/
231
232
233
234static void Hc128_SetIV(HC128* ctx, const byte* inIv)
235{
236 word32 i;
237 word32 iv[4];
238
239 if (inIv)
240 XMEMCPY(iv, inIv, sizeof(iv));
241 else
242 XMEMSET(iv, 0, sizeof(iv));
243
244 for (i = 0; i < (128 >> 5); i++)
245 ctx->iv[i] = LITTLE32(iv[i]);
246
247 for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4];
248
249 /* expand the key and IV into the table T */
250 /* (expand the key and IV into the table P and Q) */
251
252 for (i = 0; i < 8; i++) ctx->T[i] = ctx->key[i];
253 for (i = 8; i < 16; i++) ctx->T[i] = ctx->iv[i-8];
254
255 for (i = 16; i < (256+16); i++)
256 ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) +
257 ctx->T[i-16]+i;
258
259 for (i = 0; i < 16; i++) ctx->T[i] = ctx->T[256+i];
260
261 for (i = 16; i < 1024; i++)
262 ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) +
263 ctx->T[i-16]+256+i;
264
265 /* initialize counter1024, X and Y */
266 ctx->counter1024 = 0;
267 for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i];
268 for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i];
269
270 /* run the cipher 1024 steps before generating the output */
271 for (i = 0; i < 64; i++) setup_update(ctx);
272}
273
274
275static WC_INLINE int DoKey(HC128* ctx, const byte* key, const byte* iv)
276{
277 word32 i;
278
279 /* Key size in bits 128 */
280 for (i = 0; i < (128 >> 5); i++)
281 ctx->key[i] = LITTLE32(((word32*)key)[i]);
282
283 for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4];
284
285 Hc128_SetIV(ctx, iv);
286
287 return 0;
288}
289
290
291int wc_Hc128_SetHeap(HC128* ctx, void* heap)
292{
293 if (ctx == NULL) {
294 return BAD_FUNC_ARG;
295 }
296
297#ifdef XSTREAM_ALIGN
298 ctx->heap = heap;
299#endif
300
301 (void)heap;
302 return 0;
303}
304
305/* Key setup */
306int wc_Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv)
307{
308 if (ctx == NULL || key == NULL) {
309 return BAD_FUNC_ARG;
310 }
311
312#ifdef XSTREAM_ALIGN
313 /* default heap to NULL or heap test value */
314 #ifdef WOLFSSL_HEAP_TEST
315 ctx->heap = (void*)WOLFSSL_HEAP_TEST;
316 #else
317 ctx->heap = NULL;
318 #endif /* WOLFSSL_HEAP_TEST */
319
320 if ((wolfssl_word)key % 4) {
321 int alignKey[4];
322
323 /* iv gets aligned in SetIV */
324 WOLFSSL_MSG("Hc128SetKey unaligned key");
325
326 XMEMCPY(alignKey, key, sizeof(alignKey));
327
328 return DoKey(ctx, (const byte*)alignKey, iv);
329 }
330#endif /* XSTREAM_ALIGN */
331
332 return DoKey(ctx, key, iv);
333}
334
335
336
337/* The following defines the encryption of data stream */
338static WC_INLINE int DoProcess(HC128* ctx, byte* output, const byte* input,
339 word32 msglen)
340{
341 word32 i, keystream[16];
342
343 for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64)
344 {
345 generate_keystream(ctx, keystream);
346
347 /* unroll loop */
348 ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]);
349 ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]);
350 ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]);
351 ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]);
352 ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]);
353 ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]);
354 ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]);
355 ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]);
356 ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]);
357 ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]);
358 ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]);
359 ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]);
360 ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]);
361 ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]);
362 ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]);
363 ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]);
364 }
365
366 if (msglen > 0)
367 {
368 XMEMSET(keystream, 0, sizeof(keystream)); /* hush the static analysis */
369 generate_keystream(ctx, keystream);
370
371#ifdef BIG_ENDIAN_ORDER
372 {
373 word32 wordsLeft = msglen / sizeof(word32);
374 if (msglen % sizeof(word32)) wordsLeft++;
375
376 ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32));
377 }
378#endif
379
380 for (i = 0; i < msglen; i++)
381 output[i] = input[i] ^ ((byte*)keystream)[i];
382 }
383
384 return 0;
385}
386
387
388/* Encrypt/decrypt a message of any size */
389int wc_Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen)
390{
391 if (ctx == NULL || output == NULL || input == NULL) {
392 return BAD_FUNC_ARG;
393 }
394
395#ifdef XSTREAM_ALIGN
396 if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) {
397 #ifndef NO_WOLFSSL_ALLOC_ALIGN
398 byte* tmp;
399 WOLFSSL_MSG("Hc128Process unaligned");
400
401 tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
402 if (tmp == NULL) return MEMORY_E;
403
404 XMEMCPY(tmp, input, msglen);
405 DoProcess(ctx, tmp, tmp, msglen);
406 XMEMCPY(output, tmp, msglen);
407
408 XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
409
410 return 0;
411 #else
412 return BAD_ALIGN_E;
413 #endif
414 }
415#endif /* XSTREAM_ALIGN */
416
417 return DoProcess(ctx, output, input, msglen);
418}
419
420
421#else /* HAVE_HC128 */
422
423
424#ifdef _MSC_VER
425 /* 4206 warning for blank file */
426 #pragma warning(disable: 4206)
427#endif
428
429
430#endif /* HAVE_HC128 */
Note: See TracBrowser for help on using the repository browser.