/* random.c * * Copyright (C) 2006-2015 wolfSSL Inc. * * This file is part of wolfSSL. (formerly known as CyaSSL) * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef HAVE_CONFIG_H #include #endif #include /* on HPUX 11 you may need to install /dev/random see http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I */ #include #ifdef HAVE_FIPS int wc_GenerateSeed(OS_Seed* os, byte* seed, word32 sz) { return GenerateSeed(os, seed, sz); } #ifdef HAVE_CAVIUM int wc_InitRngCavium(WC_RNG* rng, int i) { return InitRngCavium(rng, i); } #endif int wc_InitRng(WC_RNG* rng) { return InitRng_fips(rng); } int wc_RNG_GenerateBlock(WC_RNG* rng, byte* b, word32 sz) { return RNG_GenerateBlock_fips(rng, b, sz); } int wc_RNG_GenerateByte(WC_RNG* rng, byte* b) { return RNG_GenerateByte(rng, b); } #if defined(HAVE_HASHDRBG) || defined(NO_RC4) int wc_FreeRng(WC_RNG* rng) { return FreeRng_fips(rng); } int wc_RNG_HealthTest(int reseed, const byte* entropyA, word32 entropyASz, const byte* entropyB, word32 entropyBSz, byte* output, word32 outputSz) { return RNG_HealthTest_fips(reseed, entropyA, entropyASz, entropyB, entropyBSz, output, outputSz); } #endif /* HAVE_HASHDRBG || NO_RC4 */ #else /* else build without fips */ #include #if defined(HAVE_HASHDRBG) || defined(NO_RC4) #include #ifdef NO_INLINE #include #else #include #endif #endif /* HAVE_HASHDRBG || NO_RC4 */ #if defined(USE_WINDOWS_API) #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x0400 #endif #include #include #else #if !defined(NO_DEV_RANDOM) && !defined(CUSTOM_RAND_GENERATE) && \ !defined(WOLFSSL_GENSEED_FORTEST) && !defined(WOLFSSL_MDK_ARM) && \ !defined(WOLFSSL_IAR_ARM) && !defined(WOLFSSL_ROWLEY_ARM) //#include #ifndef EBSNET //#include #endif #elif defined(FREESCALE_TRNG) #define TRNG_INSTANCE (0) #include "fsl_device_registers.h" #include "fsl_trng_driver.h" #else /* include headers that may be needed to get good seed */ #endif #endif /* USE_WINDOWS_API */ #ifdef HAVE_INTEL_RDGEN static int wc_InitRng_IntelRD(void) ; #if defined(HAVE_HASHDRBG) || defined(NO_RC4) static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz) ; #else static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz) ; #endif static word32 cpuid_check = 0 ; static word32 cpuid_flags = 0 ; #define CPUID_RDRAND 0x4 #define CPUID_RDSEED 0x8 #define IS_INTEL_RDRAND (cpuid_flags&CPUID_RDRAND) #define IS_INTEL_RDSEED (cpuid_flags&CPUID_RDSEED) #endif #if defined(HAVE_HASHDRBG) || defined(NO_RC4) /* Start NIST DRBG code */ #define OUTPUT_BLOCK_LEN (SHA256_DIGEST_SIZE) #define MAX_REQUEST_LEN (0x10000) #define RESEED_INTERVAL (1000000) #define SECURITY_STRENGTH (256) #define ENTROPY_SZ (SECURITY_STRENGTH/8) #define NONCE_SZ (ENTROPY_SZ/2) #define ENTROPY_NONCE_SZ (ENTROPY_SZ+NONCE_SZ) /* Internal return codes */ #define DRBG_SUCCESS 0 #define DRBG_ERROR 1 #define DRBG_FAILURE 2 #define DRBG_NEED_RESEED 3 #define DRBG_CONT_FAILURE 4 /* RNG health states */ #define DRBG_NOT_INIT 0 #define DRBG_OK 1 #define DRBG_FAILED 2 #define DRBG_CONT_FAILED 3 enum { drbgInitC = 0, drbgReseed = 1, drbgGenerateW = 2, drbgGenerateH = 3, drbgInitV }; typedef struct DRBG { word32 reseedCtr; word32 lastBlock; byte V[DRBG_SEED_LEN]; byte C[DRBG_SEED_LEN]; byte matchCount; } DRBG; static int wc_RNG_HealthTestLocal(int reseed); /* Hash Derivation Function */ /* Returns: DRBG_SUCCESS or DRBG_FAILURE */ static int Hash_df(DRBG* drbg, byte* out, word32 outSz, byte type, const byte* inA, word32 inASz, const byte* inB, word32 inBSz) { byte ctr; int i; int len; word32 bits = (outSz * 8); /* reverse byte order */ Sha256 sha; byte digest[SHA256_DIGEST_SIZE]; (void)drbg; #ifdef LITTLE_ENDIAN_ORDER bits = ByteReverseWord32(bits); #endif len = (outSz / OUTPUT_BLOCK_LEN) + ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0); for (i = 0, ctr = 1; i < len; i++, ctr++) { if (wc_InitSha256(&sha) != 0) return DRBG_FAILURE; if (wc_Sha256Update(&sha, &ctr, sizeof(ctr)) != 0) return DRBG_FAILURE; if (wc_Sha256Update(&sha, (byte*)&bits, sizeof(bits)) != 0) return DRBG_FAILURE; /* churning V is the only string that doesn't have the type added */ if (type != drbgInitV) if (wc_Sha256Update(&sha, &type, sizeof(type)) != 0) return DRBG_FAILURE; if (wc_Sha256Update(&sha, inA, inASz) != 0) return DRBG_FAILURE; if (inB != NULL && inBSz > 0) if (wc_Sha256Update(&sha, inB, inBSz) != 0) return DRBG_FAILURE; if (wc_Sha256Final(&sha, digest) != 0) return DRBG_FAILURE; if (outSz > OUTPUT_BLOCK_LEN) { XMEMCPY(out, digest, OUTPUT_BLOCK_LEN); outSz -= OUTPUT_BLOCK_LEN; out += OUTPUT_BLOCK_LEN; } else { XMEMCPY(out, digest, outSz); } } ForceZero(digest, sizeof(digest)); return DRBG_SUCCESS; } /* Returns: DRBG_SUCCESS or DRBG_FAILURE */ static int Hash_DRBG_Reseed(DRBG* drbg, const byte* entropy, word32 entropySz) { byte seed[DRBG_SEED_LEN]; if (Hash_df(drbg, seed, sizeof(seed), drbgReseed, drbg->V, sizeof(drbg->V), entropy, entropySz) != DRBG_SUCCESS) { return DRBG_FAILURE; } XMEMCPY(drbg->V, seed, sizeof(drbg->V)); ForceZero(seed, sizeof(seed)); if (Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V, sizeof(drbg->V), NULL, 0) != DRBG_SUCCESS) { return DRBG_FAILURE; } drbg->reseedCtr = 1; drbg->lastBlock = 0; drbg->matchCount = 0; return DRBG_SUCCESS; } static INLINE void array_add_one(byte* data, word32 dataSz) { int i; for (i = dataSz - 1; i >= 0; i--) { data[i]++; if (data[i] != 0) break; } } /* Returns: DRBG_SUCCESS or DRBG_FAILURE */ static int Hash_gen(DRBG* drbg, byte* out, word32 outSz, const byte* V) { byte data[DRBG_SEED_LEN]; int i; int len; word32 checkBlock; Sha256 sha; byte digest[SHA256_DIGEST_SIZE]; /* Special case: outSz is 0 and out is NULL. wc_Generate a block to save for * the continuous test. */ if (outSz == 0) outSz = 1; len = (outSz / OUTPUT_BLOCK_LEN) + ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0); XMEMCPY(data, V, sizeof(data)); for (i = 0; i < len; i++) { if (wc_InitSha256(&sha) != 0 || wc_Sha256Update(&sha, data, sizeof(data)) != 0 || wc_Sha256Final(&sha, digest) != 0) { return DRBG_FAILURE; } XMEMCPY(&checkBlock, digest, sizeof(word32)); if (drbg->reseedCtr > 1 && checkBlock == drbg->lastBlock) { if (drbg->matchCount == 1) { return DRBG_CONT_FAILURE; } else { if (i == len) { len++; } drbg->matchCount = 1; } } else { drbg->matchCount = 0; drbg->lastBlock = checkBlock; } if (outSz >= OUTPUT_BLOCK_LEN) { XMEMCPY(out, digest, OUTPUT_BLOCK_LEN); outSz -= OUTPUT_BLOCK_LEN; out += OUTPUT_BLOCK_LEN; array_add_one(data, DRBG_SEED_LEN); } else if (out != NULL && outSz != 0) { XMEMCPY(out, digest, outSz); outSz = 0; } } ForceZero(data, sizeof(data)); return DRBG_SUCCESS; } static INLINE void array_add(byte* d, word32 dLen, const byte* s, word32 sLen) { word16 carry = 0; if (dLen > 0 && sLen > 0 && dLen >= sLen) { int sIdx, dIdx; for (sIdx = sLen - 1, dIdx = dLen - 1; sIdx >= 0; dIdx--, sIdx--) { carry += d[dIdx] + s[sIdx]; d[dIdx] = (byte)carry; carry >>= 8; } for (; carry != 0 && dIdx >= 0; dIdx--) { carry += d[dIdx]; d[dIdx] = (byte)carry; carry >>= 8; } } } /* Returns: DRBG_SUCCESS, DRBG_NEED_RESEED, or DRBG_FAILURE */ static int Hash_DRBG_Generate(DRBG* drbg, byte* out, word32 outSz) { int ret = DRBG_NEED_RESEED; Sha256 sha; byte digest[SHA256_DIGEST_SIZE]; if (drbg->reseedCtr != RESEED_INTERVAL) { byte type = drbgGenerateH; word32 reseedCtr = drbg->reseedCtr; ret = Hash_gen(drbg, out, outSz, drbg->V); if (ret == DRBG_SUCCESS) { if (wc_InitSha256(&sha) != 0 || wc_Sha256Update(&sha, &type, sizeof(type)) != 0 || wc_Sha256Update(&sha, drbg->V, sizeof(drbg->V)) != 0 || wc_Sha256Final(&sha, digest) != 0) { ret = DRBG_FAILURE; } else { array_add(drbg->V, sizeof(drbg->V), digest, sizeof(digest)); array_add(drbg->V, sizeof(drbg->V), drbg->C, sizeof(drbg->C)); #ifdef LITTLE_ENDIAN_ORDER reseedCtr = ByteReverseWord32(reseedCtr); #endif array_add(drbg->V, sizeof(drbg->V), (byte*)&reseedCtr, sizeof(reseedCtr)); ret = DRBG_SUCCESS; } drbg->reseedCtr++; } } ForceZero(digest, sizeof(digest)); return ret; } /* Returns: DRBG_SUCCESS or DRBG_FAILURE */ static int Hash_DRBG_Instantiate(DRBG* drbg, const byte* seed, word32 seedSz, const byte* nonce, word32 nonceSz) { int ret = DRBG_FAILURE; XMEMSET(drbg, 0, sizeof(DRBG)); if (Hash_df(drbg, drbg->V, sizeof(drbg->V), drbgInitV, seed, seedSz, nonce, nonceSz) == DRBG_SUCCESS && Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V, sizeof(drbg->V), NULL, 0) == DRBG_SUCCESS) { drbg->reseedCtr = 1; drbg->lastBlock = 0; drbg->matchCount = 0; ret = DRBG_SUCCESS; } return ret; } /* Returns: DRBG_SUCCESS or DRBG_FAILURE */ static int Hash_DRBG_Uninstantiate(DRBG* drbg) { word32 i; int compareSum = 0; byte* compareDrbg = (byte*)drbg; ForceZero(drbg, sizeof(DRBG)); for (i = 0; i < sizeof(DRBG); i++) compareSum |= compareDrbg[i] ^ 0; return (compareSum == 0) ? DRBG_SUCCESS : DRBG_FAILURE; } /* End NIST DRBG Code */ /* Get seed and key cipher */ int wc_InitRng(WC_RNG* rng) { int ret = BAD_FUNC_ARG; if (rng != NULL) { if (wc_RNG_HealthTestLocal(0) == 0) { byte entropy[ENTROPY_NONCE_SZ]; rng->drbg = (struct DRBG*)XMALLOC(sizeof(DRBG), NULL, DYNAMIC_TYPE_RNG); if (rng->drbg == NULL) { ret = MEMORY_E; } /* This doesn't use a separate nonce. The entropy input will be * the default size plus the size of the nonce making the seed * size. */ else if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_NONCE_SZ) == 0 && Hash_DRBG_Instantiate(rng->drbg, entropy, ENTROPY_NONCE_SZ, NULL, 0) == DRBG_SUCCESS) { ret = Hash_DRBG_Generate(rng->drbg, NULL, 0); } else ret = DRBG_FAILURE; ForceZero(entropy, ENTROPY_NONCE_SZ); } else ret = DRBG_CONT_FAILURE; if (ret == DRBG_SUCCESS) { rng->status = DRBG_OK; ret = 0; } else if (ret == DRBG_CONT_FAILURE) { rng->status = DRBG_CONT_FAILED; ret = DRBG_CONT_FIPS_E; } else if (ret == DRBG_FAILURE) { rng->status = DRBG_FAILED; ret = RNG_FAILURE_E; } else { rng->status = DRBG_FAILED; } } return ret; } /* place a generated block in output */ int wc_RNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz) { int ret; if (rng == NULL || output == NULL || sz > MAX_REQUEST_LEN) return BAD_FUNC_ARG; if (rng->status != DRBG_OK) return RNG_FAILURE_E; ret = Hash_DRBG_Generate(rng->drbg, output, sz); if (ret == DRBG_NEED_RESEED) { if (wc_RNG_HealthTestLocal(1) == 0) { byte entropy[ENTROPY_SZ]; if (wc_GenerateSeed(&rng->seed, entropy, ENTROPY_SZ) == 0 && Hash_DRBG_Reseed(rng->drbg, entropy, ENTROPY_SZ) == DRBG_SUCCESS) { ret = Hash_DRBG_Generate(rng->drbg, NULL, 0); if (ret == DRBG_SUCCESS) ret = Hash_DRBG_Generate(rng->drbg, output, sz); } else ret = DRBG_FAILURE; ForceZero(entropy, ENTROPY_SZ); } else ret = DRBG_CONT_FAILURE; } if (ret == DRBG_SUCCESS) { ret = 0; } else if (ret == DRBG_CONT_FAILURE) { ret = DRBG_CONT_FIPS_E; rng->status = DRBG_CONT_FAILED; } else { ret = RNG_FAILURE_E; rng->status = DRBG_FAILED; } return ret; } int wc_RNG_GenerateByte(WC_RNG* rng, byte* b) { return wc_RNG_GenerateBlock(rng, b, 1); } int wc_FreeRng(WC_RNG* rng) { int ret = BAD_FUNC_ARG; if (rng != NULL) { if (rng->drbg != NULL) { if (Hash_DRBG_Uninstantiate(rng->drbg) == DRBG_SUCCESS) ret = 0; else ret = RNG_FAILURE_E; XFREE(rng->drbg, NULL, DYNAMIC_TYPE_RNG); rng->drbg = NULL; } rng->status = DRBG_NOT_INIT; } return ret; } int wc_RNG_HealthTest(int reseed, const byte* entropyA, word32 entropyASz, const byte* entropyB, word32 entropyBSz, byte* output, word32 outputSz) { DRBG drbg; if (entropyA == NULL || output == NULL) return BAD_FUNC_ARG; if (reseed != 0 && entropyB == NULL) return BAD_FUNC_ARG; if (outputSz != (SHA256_DIGEST_SIZE * 4)) return -1; if (Hash_DRBG_Instantiate(&drbg, entropyA, entropyASz, NULL, 0) != 0) return -1; if (reseed) { if (Hash_DRBG_Reseed(&drbg, entropyB, entropyBSz) != 0) { Hash_DRBG_Uninstantiate(&drbg); return -1; } } if (Hash_DRBG_Generate(&drbg, output, outputSz) != 0) { Hash_DRBG_Uninstantiate(&drbg); return -1; } if (Hash_DRBG_Generate(&drbg, output, outputSz) != 0) { Hash_DRBG_Uninstantiate(&drbg); return -1; } if (Hash_DRBG_Uninstantiate(&drbg) != 0) { return -1; } return 0; } const byte entropyA[] = { 0x63, 0x36, 0x33, 0x77, 0xe4, 0x1e, 0x86, 0x46, 0x8d, 0xeb, 0x0a, 0xb4, 0xa8, 0xed, 0x68, 0x3f, 0x6a, 0x13, 0x4e, 0x47, 0xe0, 0x14, 0xc7, 0x00, 0x45, 0x4e, 0x81, 0xe9, 0x53, 0x58, 0xa5, 0x69, 0x80, 0x8a, 0xa3, 0x8f, 0x2a, 0x72, 0xa6, 0x23, 0x59, 0x91, 0x5a, 0x9f, 0x8a, 0x04, 0xca, 0x68 }; const byte reseedEntropyA[] = { 0xe6, 0x2b, 0x8a, 0x8e, 0xe8, 0xf1, 0x41, 0xb6, 0x98, 0x05, 0x66, 0xe3, 0xbf, 0xe3, 0xc0, 0x49, 0x03, 0xda, 0xd4, 0xac, 0x2c, 0xdf, 0x9f, 0x22, 0x80, 0x01, 0x0a, 0x67, 0x39, 0xbc, 0x83, 0xd3 }; const byte outputA[] = { 0x04, 0xee, 0xc6, 0x3b, 0xb2, 0x31, 0xdf, 0x2c, 0x63, 0x0a, 0x1a, 0xfb, 0xe7, 0x24, 0x94, 0x9d, 0x00, 0x5a, 0x58, 0x78, 0x51, 0xe1, 0xaa, 0x79, 0x5e, 0x47, 0x73, 0x47, 0xc8, 0xb0, 0x56, 0x62, 0x1c, 0x18, 0xbd, 0xdc, 0xdd, 0x8d, 0x99, 0xfc, 0x5f, 0xc2, 0xb9, 0x20, 0x53, 0xd8, 0xcf, 0xac, 0xfb, 0x0b, 0xb8, 0x83, 0x12, 0x05, 0xfa, 0xd1, 0xdd, 0xd6, 0xc0, 0x71, 0x31, 0x8a, 0x60, 0x18, 0xf0, 0x3b, 0x73, 0xf5, 0xed, 0xe4, 0xd4, 0xd0, 0x71, 0xf9, 0xde, 0x03, 0xfd, 0x7a, 0xea, 0x10, 0x5d, 0x92, 0x99, 0xb8, 0xaf, 0x99, 0xaa, 0x07, 0x5b, 0xdb, 0x4d, 0xb9, 0xaa, 0x28, 0xc1, 0x8d, 0x17, 0x4b, 0x56, 0xee, 0x2a, 0x01, 0x4d, 0x09, 0x88, 0x96, 0xff, 0x22, 0x82, 0xc9, 0x55, 0xa8, 0x19, 0x69, 0xe0, 0x69, 0xfa, 0x8c, 0xe0, 0x07, 0xa1, 0x80, 0x18, 0x3a, 0x07, 0xdf, 0xae, 0x17 }; const byte entropyB[] = { 0xa6, 0x5a, 0xd0, 0xf3, 0x45, 0xdb, 0x4e, 0x0e, 0xff, 0xe8, 0x75, 0xc3, 0xa2, 0xe7, 0x1f, 0x42, 0xc7, 0x12, 0x9d, 0x62, 0x0f, 0xf5, 0xc1, 0x19, 0xa9, 0xef, 0x55, 0xf0, 0x51, 0x85, 0xe0, 0xfb, 0x85, 0x81, 0xf9, 0x31, 0x75, 0x17, 0x27, 0x6e, 0x06, 0xe9, 0x60, 0x7d, 0xdb, 0xcb, 0xcc, 0x2e }; const byte outputB[] = { 0xd3, 0xe1, 0x60, 0xc3, 0x5b, 0x99, 0xf3, 0x40, 0xb2, 0x62, 0x82, 0x64, 0xd1, 0x75, 0x10, 0x60, 0xe0, 0x04, 0x5d, 0xa3, 0x83, 0xff, 0x57, 0xa5, 0x7d, 0x73, 0xa6, 0x73, 0xd2, 0xb8, 0xd8, 0x0d, 0xaa, 0xf6, 0xa6, 0xc3, 0x5a, 0x91, 0xbb, 0x45, 0x79, 0xd7, 0x3f, 0xd0, 0xc8, 0xfe, 0xd1, 0x11, 0xb0, 0x39, 0x13, 0x06, 0x82, 0x8a, 0xdf, 0xed, 0x52, 0x8f, 0x01, 0x81, 0x21, 0xb3, 0xfe, 0xbd, 0xc3, 0x43, 0xe7, 0x97, 0xb8, 0x7d, 0xbb, 0x63, 0xdb, 0x13, 0x33, 0xde, 0xd9, 0xd1, 0xec, 0xe1, 0x77, 0xcf, 0xa6, 0xb7, 0x1f, 0xe8, 0xab, 0x1d, 0xa4, 0x66, 0x24, 0xed, 0x64, 0x15, 0xe5, 0x1c, 0xcd, 0xe2, 0xc7, 0xca, 0x86, 0xe2, 0x83, 0x99, 0x0e, 0xea, 0xeb, 0x91, 0x12, 0x04, 0x15, 0x52, 0x8b, 0x22, 0x95, 0x91, 0x02, 0x81, 0xb0, 0x2d, 0xd4, 0x31, 0xf4, 0xc9, 0xf7, 0x04, 0x27, 0xdf }; static int wc_RNG_HealthTestLocal(int reseed) { int ret = 0; byte check[SHA256_DIGEST_SIZE * 4]; if (reseed) { ret = wc_RNG_HealthTest(1, entropyA, sizeof(entropyA), reseedEntropyA, sizeof(reseedEntropyA), check, sizeof(check)); if (ret == 0) { if (ConstantCompare(check, outputA, sizeof(check)) != 0) ret = -1; } } else { ret = wc_RNG_HealthTest(0, entropyB, sizeof(entropyB), NULL, 0, check, sizeof(check)); if (ret == 0) { if (ConstantCompare(check, outputB, sizeof(check)) != 0) ret = -1; } } return ret; } #else /* HAVE_HASHDRBG || NO_RC4 */ /* Get seed and key cipher */ int wc_InitRng(WC_RNG* rng) { int ret; #ifdef WOLFSSL_SMALL_STACK byte* key; byte* junk; #else byte key[32]; byte junk[256]; #endif #ifdef HAVE_INTEL_RDGEN wc_InitRng_IntelRD() ; if(IS_INTEL_RDRAND)return 0 ; #endif #ifdef HAVE_CAVIUM if (rng->magic == WOLFSSL_RNG_CAVIUM_MAGIC) return 0; #endif #ifdef WOLFSSL_SMALL_STACK key = (byte*)XMALLOC(32, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (key == NULL) return MEMORY_E; junk = (byte*)XMALLOC(256, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (junk == NULL) { XFREE(key, NULL, DYNAMIC_TYPE_TMP_BUFFER); return MEMORY_E; } #endif ret = wc_GenerateSeed(&rng->seed, key, 32); if (ret == 0) { wc_Arc4SetKey(&rng->cipher, key, sizeof(key)); ret = wc_RNG_GenerateBlock(rng, junk, 256); /*rid initial state*/ } #ifdef WOLFSSL_SMALL_STACK XFREE(key, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(junk, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } #ifdef HAVE_CAVIUM static void CaviumRNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz); #endif /* place a generated block in output */ int wc_RNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz) { #ifdef HAVE_INTEL_RDGEN if(IS_INTEL_RDRAND) return wc_GenerateRand_IntelRD(NULL, output, sz) ; #endif #ifdef HAVE_CAVIUM if (rng->magic == WOLFSSL_RNG_CAVIUM_MAGIC) return CaviumRNG_GenerateBlock(rng, output, sz); #endif XMEMSET(output, 0, sz); wc_Arc4Process(&rng->cipher, output, output, sz); return 0; } int wc_RNG_GenerateByte(WC_RNG* rng, byte* b) { return wc_RNG_GenerateBlock(rng, b, 1); } int wc_FreeRng(WC_RNG* rng) { (void)rng; return 0; } #ifdef HAVE_CAVIUM #include #include "cavium_common.h" /* Initiliaze RNG for use with Nitrox device */ int wc_InitRngCavium(WC_RNG* rng, int devId) { if (rng == NULL) return -1; rng->devId = devId; rng->magic = WOLFSSL_RNG_CAVIUM_MAGIC; return 0; } static void CaviumRNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz) { wolfssl_word offset = 0; word32 requestId; while (sz > WOLFSSL_MAX_16BIT) { word16 slen = (word16)WOLFSSL_MAX_16BIT; if (CspRandom(CAVIUM_BLOCKING, slen, output + offset, &requestId, rng->devId) != 0) { WOLFSSL_MSG("Cavium RNG failed"); } sz -= WOLFSSL_MAX_16BIT; offset += WOLFSSL_MAX_16BIT; } if (sz) { word16 slen = (word16)sz; if (CspRandom(CAVIUM_BLOCKING, slen, output + offset, &requestId, rng->devId) != 0) { WOLFSSL_MSG("Cavium RNG failed"); } } } #endif /* HAVE_CAVIUM */ #endif /* HAVE_HASHDRBG || NO_RC4 */ #if defined(HAVE_INTEL_RDGEN) #ifndef _MSC_VER #define cpuid(reg, leaf, sub)\ __asm__ __volatile__ ("cpuid":\ "=a" (reg[0]), "=b" (reg[1]), "=c" (reg[2]), "=d" (reg[3]) :\ "a" (leaf), "c"(sub)); #define XASM_LINK(f) asm(f) #else #include #define cpuid(a,b) __cpuid((int*)a,b) #define XASM_LINK(f) #endif /* _MSC_VER */ #define EAX 0 #define EBX 1 #define ECX 2 #define EDX 3 static word32 cpuid_flag(word32 leaf, word32 sub, word32 num, word32 bit) { int got_intel_cpu=0; unsigned int reg[5]; reg[4] = '\0' ; cpuid(reg, 0, 0); if(memcmp((char *)&(reg[EBX]), "Genu", 4) == 0 && memcmp((char *)&(reg[EDX]), "ineI", 4) == 0 && memcmp((char *)&(reg[ECX]), "ntel", 4) == 0) { got_intel_cpu = 1; } if (got_intel_cpu) { cpuid(reg, leaf, sub); return((reg[num]>>bit)&0x1) ; } return 0 ; } static int wc_InitRng_IntelRD() { if(cpuid_check==0) { if(cpuid_flag(1, 0, ECX, 30)){ cpuid_flags |= CPUID_RDRAND ;} if(cpuid_flag(7, 0, EBX, 18)){ cpuid_flags |= CPUID_RDSEED ;} cpuid_check = 1 ; } return 1 ; } #define INTELRD_RETRY 10 #if defined(HAVE_HASHDRBG) || defined(NO_RC4) /* return 0 on success */ static INLINE int IntelRDseed32(unsigned int *seed) { int rdseed; unsigned char ok ; __asm__ volatile("rdseed %0; setc %1":"=r"(rdseed), "=qm"(ok)); if(ok){ *seed = rdseed ; return 0 ; } else return 1; } /* return 0 on success */ static INLINE int IntelRDseed32_r(unsigned int *rnd) { int i ; for(i=0; i 0; sz-=4, output+=4) { if(IS_INTEL_RDSEED)ret = IntelRDseed32_r((word32 *)output) ; else return 1 ; if(ret) return 1 ; } if(sz == 0)return 0 ; if(IS_INTEL_RDSEED)ret = IntelRDseed32_r(&rndTmp) ; else return 1 ; if(ret) return 1 ; XMEMCPY(output, &rndTmp, sz) ; return 0; } #else /* return 0 on success */ static INLINE int IntelRDrand32(unsigned int *rnd) { int rdrand; unsigned char ok ; __asm__ volatile("rdrand %0; setc %1":"=r"(rdrand), "=qm"(ok)); if(ok){ *rnd = rdrand; return 0 ; } else return 1; } /* return 0 on success */ static INLINE int IntelRDrand32_r(unsigned int *rnd) { int i ; for(i=0; i 0; sz-=4, output+=4) { if(IS_INTEL_RDRAND)ret = IntelRDrand32_r((word32 *)output); else return 1 ; if(ret) return 1 ; } if(sz == 0)return 0 ; if(IS_INTEL_RDRAND)ret = IntelRDrand32_r(&rndTmp); else return 1 ; if(ret) return 1 ; XMEMCPY(output, &rndTmp, sz) ; return 0; } #endif /* defined(HAVE_HASHDRBG) || defined(NO_RC4) */ #endif /* HAVE_INTEL_RDGEN */ #if defined(USE_WINDOWS_API) int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { if(!CryptAcquireContext(&os->handle, 0, 0, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) return WINCRYPT_E; if (!CryptGenRandom(os->handle, sz, output)) return CRYPTGEN_E; CryptReleaseContext(os->handle, 0); return 0; } #elif defined(HAVE_RTP_SYS) || defined(EBSNET) #include "rtprand.h" /* rtp_rand () */ #include "rtptime.h" /* rtp_get_system_msec() */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; rtp_srand(rtp_get_system_msec()); for (i = 0; i < sz; i++ ) { output[i] = rtp_rand() % 256; if ( (i % 8) == 7) rtp_srand(rtp_get_system_msec()); } return 0; } #elif defined(MICRIUM) int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { #if (NET_SECURE_MGR_CFG_EN == DEF_ENABLED) NetSecure_InitSeed(output, sz); #endif return 0; } #elif defined(MICROCHIP_PIC32) #ifdef MICROCHIP_MPLAB_HARMONY #define PIC32_SEED_COUNT _CP0_GET_COUNT #else #if !defined(WOLFSSL_MICROCHIP_PIC32MZ) #include #endif #define PIC32_SEED_COUNT ReadCoreTimer #endif #ifdef WOLFSSL_MIC32MZ_RNG #include "xc.h" int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i ; byte rnd[8] ; word32 *rnd32 = (word32 *)rnd ; word32 size = sz ; byte* op = output ; /* This part has to be replaced with better random seed */ RNGNUMGEN1 = ReadCoreTimer(); RNGPOLY1 = ReadCoreTimer(); RNGPOLY2 = ReadCoreTimer(); RNGNUMGEN2 = ReadCoreTimer(); #ifdef DEBUG_WOLFSSL printf("GenerateSeed::Seed=%08x, %08x\n", RNGNUMGEN1, RNGNUMGEN2) ; #endif RNGCONbits.PLEN = 0x40; RNGCONbits.PRNGEN = 1; for(i=0; i<5; i++) { /* wait for RNGNUMGEN ready */ volatile int x ; x = RNGNUMGEN1 ; x = RNGNUMGEN2 ; } do { rnd32[0] = RNGNUMGEN1; rnd32[1] = RNGNUMGEN2; for(i=0; i<8; i++, op++) { *op = rnd[i] ; size -- ; if(size==0)break ; } } while(size) ; return 0; } #else /* WOLFSSL_MIC32MZ_RNG */ /* uses the core timer, in nanoseconds to seed srand */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; srand(PIC32_SEED_COUNT() * 25); for (i = 0; i < sz; i++ ) { output[i] = rand() % 256; if ( (i % 8) == 7) srand(PIC32_SEED_COUNT() * 25); } return 0; } #endif /* WOLFSSL_MIC32MZ_RNG */ #elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) || \ defined(FREESCALE_KSDK_BM) || defined(FREESCALE_FREE_RTOS) #ifdef FREESCALE_K70_RNGA /* * wc_Generates a RNG seed using the Random Number Generator Accelerator * on the Kinetis K70. Documentation located in Chapter 37 of * K70 Sub-Family Reference Manual (see Note 3 in the README for link). */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; /* turn on RNGA module */ SIM_SCGC3 |= SIM_SCGC3_RNGA_MASK; /* set SLP bit to 0 - "RNGA is not in sleep mode" */ RNG_CR &= ~RNG_CR_SLP_MASK; /* set HA bit to 1 - "security violations masked" */ RNG_CR |= RNG_CR_HA_MASK; /* set GO bit to 1 - "output register loaded with data" */ RNG_CR |= RNG_CR_GO_MASK; for (i = 0; i < sz; i++) { /* wait for RNG FIFO to be full */ while((RNG_SR & RNG_SR_OREG_LVL(0xF)) == 0) {} /* get value */ output[i] = RNG_OR; } return 0; } #elif defined(FREESCALE_K53_RNGB) /* * wc_Generates a RNG seed using the Random Number Generator (RNGB) * on the Kinetis K53. Documentation located in Chapter 33 of * K53 Sub-Family Reference Manual (see note in the README for link). */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; /* turn on RNGB module */ SIM_SCGC3 |= SIM_SCGC3_RNGB_MASK; /* reset RNGB */ RNG_CMD |= RNG_CMD_SR_MASK; /* FIFO generate interrupt, return all zeros on underflow, * set auto reseed */ RNG_CR |= (RNG_CR_FUFMOD_MASK | RNG_CR_AR_MASK); /* gen seed, clear interrupts, clear errors */ RNG_CMD |= (RNG_CMD_GS_MASK | RNG_CMD_CI_MASK | RNG_CMD_CE_MASK); /* wait for seeding to complete */ while ((RNG_SR & RNG_SR_SDN_MASK) == 0) {} for (i = 0; i < sz; i++) { /* wait for a word to be available from FIFO */ while((RNG_SR & RNG_SR_FIFO_LVL_MASK) == 0) {} /* get value */ output[i] = RNG_OUT; } return 0; } #elif defined(FREESCALE_TRNG) int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { TRNG_DRV_GetRandomData(TRNG_INSTANCE, output, sz); return(0); } #else #warning "write a real random seed!!!!, just for testing now" int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; for (i = 0; i < sz; i++ ) output[i] = i; return 0; } #endif /* FREESCALE_K70_RNGA */ #elif defined(WOLFSSL_SAFERTOS) || defined(WOLFSSL_LEANPSK) \ || defined(WOLFSSL_IAR_ARM) || defined(WOLFSSL_MDK_ARM) \ || defined(WOLFSSL_uITRON4) || defined(WOLFSSL_uTKERNEL2)\ || defined(WOLFSSL_GENSEED_FORTEST) #if 0 //ndef _MSC_VER #warning "write a real random seed!!!!, just for testing now" //#else #pragma message("Warning: write a real random seed!!!!, just for testing now") int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { word32 i; for (i = 0; i < sz; i++ ) output[i] = i; (void)os; return 0; } #endif #elif defined(STM32F2_RNG) #undef RNG #include "stm32f2xx_rng.h" #include "stm32f2xx_rcc.h" /* * wc_Generate a RNG seed using the hardware random number generator * on the STM32F2. Documentation located in STM32F2xx Standard Peripheral * Library document (See note in README). */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; /* enable RNG clock source */ RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE); /* enable RNG peripheral */ RNG_Cmd(ENABLE); for (i = 0; i < sz; i++) { /* wait until RNG number is ready */ while(RNG_GetFlagStatus(RNG_FLAG_DRDY)== RESET) { } /* get value */ output[i] = RNG_GetRandomNumber(); } return 0; } #elif defined(WOLFSSL_LPC43xx) || defined(WOLFSSL_STM32F2xx) || defined(MBED) #warning "write a real random seed!!!!, just for testing now" int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; for (i = 0; i < sz; i++ ) output[i] = i; return 0; } #elif defined(WOLFSSL_TIRTOS) #include #include int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int i; srand(xdc_runtime_Timestamp_get32()); for (i = 0; i < sz; i++ ) { output[i] = rand() % 256; if ((i % 8) == 7) { srand(xdc_runtime_Timestamp_get32()); } } return 0; } #elif defined(CUSTOM_RAND_GENERATE) /* Implement your own random generation function * word32 rand_gen(void); * #define CUSTOM_RAND_GENERATE rand_gen */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { word32 i; (void)os; for (i = 0; i < sz; i++ ) output[i] = CUSTOM_RAND_GENERATE(); return 0; } #elif defined(NO_DEV_RANDOM) #error "you need to write an os specific wc_GenerateSeed() here" /* int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { return 0; } */ #elif defined(IDIRECT_DEV_RANDOM) extern int getRandom( int sz, unsigned char *output ); int GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int num_bytes_returned = 0; num_bytes_returned = getRandom( (int) sz, (unsigned char *) output ); return 0; } #else /* !USE_WINDOWS_API && !HAVE_RPT_SYS && !MICRIUM && !NO_DEV_RANDOM */ /* may block */ int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) { int ret = 0; #if defined(HAVE_INTEL_RDGEN) && (defined(HAVE_HASHDRBG) || defined(NO_RC4)) wc_InitRng_IntelRD() ; /* set cpuid_flags if not yet */ if(IS_INTEL_RDSEED) return wc_GenerateSeed_IntelRD(NULL, output, sz) ; #endif os->fd = open("/dev/urandom",O_RDONLY); if (os->fd == -1) { /* may still have /dev/random */ os->fd = open("/dev/random",O_RDONLY); if (os->fd == -1) return OPEN_RAN_E; } while (sz) { int len = (int)read(os->fd, output, sz); if (len == -1) { ret = READ_RAN_E; break; } sz -= len; output += len; if (sz) { #ifdef BLOCKING sleep(0); /* context switch */ #else ret = RAN_BLOCK_E; break; #endif } } close(os->fd); return ret; } #endif /* USE_WINDOWS_API */ #endif /* HAVE_FIPS */