source: UsbWattMeter/trunk/wolfssl-3.7.0/wolfcrypt/src/hc128.c@ 164

Last change on this file since 164 was 164, checked in by coas-nagasima, 8 years ago

TOPPERS/ECNLサンプルアプリ「USB充電器電力計」を追加

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
  • Property svn:mime-type set to text/x-csrc
File size: 13.7 KB
Line 
1/* hc128.c
2 *
3 * Copyright (C) 2006-2015 wolfSSL Inc.
4 *
5 * This file is part of wolfSSL. (formerly known as CyaSSL)
6 *
7 * wolfSSL is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * wolfSSL is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
20 */
21
22#ifdef HAVE_CONFIG_H
23 #include <config.h>
24#endif
25
26#include <wolfssl/wolfcrypt/settings.h>
27
28#ifdef HAVE_HC128
29
30#include <wolfssl/wolfcrypt/hc128.h>
31#include <wolfssl/wolfcrypt/error-crypt.h>
32#include <wolfssl/wolfcrypt/logging.h>
33#ifdef NO_INLINE
34 #include <wolfssl/wolfcrypt/hc128.h>
35 #include <wolfssl/wolfcrypt/misc.h>
36#else
37 #include <wolfcrypt/src/misc.c>
38#endif
39
40
41#ifdef BIG_ENDIAN_ORDER
42 #define LITTLE32(x) ByteReverseWord32(x)
43#else
44 #define LITTLE32(x) (x)
45#endif
46
47
48/*h1 function*/
49#define h1(ctx, x, y) { \
50 byte a,c; \
51 a = (byte) (x); \
52 c = (byte) ((x) >> 16); \
53 y = (ctx->T[512+a])+(ctx->T[512+256+c]); \
54}
55
56/*h2 function*/
57#define h2(ctx, x, y) { \
58 byte a,c; \
59 a = (byte) (x); \
60 c = (byte) ((x) >> 16); \
61 y = (ctx->T[a])+(ctx->T[256+c]); \
62}
63
64/*one step of HC-128, update P and generate 32 bits keystream*/
65#define step_P(ctx,u,v,a,b,c,d,n){ \
66 word32 tem0,tem1,tem2,tem3; \
67 h1((ctx),(ctx->X[(d)]),tem3); \
68 tem0 = rotrFixed((ctx->T[(v)]),23); \
69 tem1 = rotrFixed((ctx->X[(c)]),10); \
70 tem2 = rotrFixed((ctx->X[(b)]),8); \
71 (ctx->T[(u)]) += tem2+(tem0 ^ tem1); \
72 (ctx->X[(a)]) = (ctx->T[(u)]); \
73 (n) = tem3 ^ (ctx->T[(u)]) ; \
74}
75
76/*one step of HC-128, update Q and generate 32 bits keystream*/
77#define step_Q(ctx,u,v,a,b,c,d,n){ \
78 word32 tem0,tem1,tem2,tem3; \
79 h2((ctx),(ctx->Y[(d)]),tem3); \
80 tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \
81 tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \
82 tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \
83 (ctx->T[(u)]) += tem2 + (tem0 ^ tem1); \
84 (ctx->Y[(a)]) = (ctx->T[(u)]); \
85 (n) = tem3 ^ (ctx->T[(u)]) ; \
86}
87
88/*16 steps of HC-128, generate 512 bits keystream*/
89static void generate_keystream(HC128* ctx, word32* keystream)
90{
91 word32 cc,dd;
92 cc = ctx->counter1024 & 0x1ff;
93 dd = (cc+16)&0x1ff;
94
95 if (ctx->counter1024 < 512)
96 {
97 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
98 step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]);
99 step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]);
100 step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]);
101 step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]);
102 step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]);
103 step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]);
104 step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]);
105 step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]);
106 step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]);
107 step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]);
108 step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]);
109 step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]);
110 step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]);
111 step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]);
112 step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]);
113 step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]);
114 }
115 else
116 {
117 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
118 step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]);
119 step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]);
120 step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]);
121 step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]);
122 step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]);
123 step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]);
124 step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]);
125 step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]);
126 step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]);
127 step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]);
128 step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]);
129 step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]);
130 step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]);
131 step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]);
132 step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]);
133 step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]);
134 }
135}
136
137
138/* The following defines the initialization functions */
139#define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3))
140#define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10))
141
142/*update table P*/
143#define update_P(ctx,u,v,a,b,c,d){ \
144 word32 tem0,tem1,tem2,tem3; \
145 tem0 = rotrFixed((ctx->T[(v)]),23); \
146 tem1 = rotrFixed((ctx->X[(c)]),10); \
147 tem2 = rotrFixed((ctx->X[(b)]),8); \
148 h1((ctx),(ctx->X[(d)]),tem3); \
149 (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
150 (ctx->X[(a)]) = (ctx->T[(u)]); \
151}
152
153/*update table Q*/
154#define update_Q(ctx,u,v,a,b,c,d){ \
155 word32 tem0,tem1,tem2,tem3; \
156 tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \
157 tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \
158 tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \
159 h2((ctx),(ctx->Y[(d)]),tem3); \
160 (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
161 (ctx->Y[(a)]) = (ctx->T[(u)]); \
162}
163
164/*16 steps of HC-128, without generating keystream, */
165/*but use the outputs to update P and Q*/
166static void setup_update(HC128* ctx) /*each time 16 steps*/
167{
168 word32 cc,dd;
169 cc = ctx->counter1024 & 0x1ff;
170 dd = (cc+16)&0x1ff;
171
172 if (ctx->counter1024 < 512)
173 {
174 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
175 update_P(ctx, cc+0, cc+1, 0, 6, 13, 4);
176 update_P(ctx, cc+1, cc+2, 1, 7, 14, 5);
177 update_P(ctx, cc+2, cc+3, 2, 8, 15, 6);
178 update_P(ctx, cc+3, cc+4, 3, 9, 0, 7);
179 update_P(ctx, cc+4, cc+5, 4, 10,1, 8);
180 update_P(ctx, cc+5, cc+6, 5, 11,2, 9);
181 update_P(ctx, cc+6, cc+7, 6, 12,3, 10);
182 update_P(ctx, cc+7, cc+8, 7, 13,4, 11);
183 update_P(ctx, cc+8, cc+9, 8, 14,5, 12);
184 update_P(ctx, cc+9, cc+10,9, 15,6, 13);
185 update_P(ctx, cc+10,cc+11,10,0, 7, 14);
186 update_P(ctx, cc+11,cc+12,11,1, 8, 15);
187 update_P(ctx, cc+12,cc+13,12,2, 9, 0);
188 update_P(ctx, cc+13,cc+14,13,3, 10, 1);
189 update_P(ctx, cc+14,cc+15,14,4, 11, 2);
190 update_P(ctx, cc+15,dd+0, 15,5, 12, 3);
191 }
192 else
193 {
194 ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
195 update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4);
196 update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5);
197 update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6);
198 update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7);
199 update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8);
200 update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9);
201 update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10);
202 update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11);
203 update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12);
204 update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13);
205 update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14);
206 update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15);
207 update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0);
208 update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1);
209 update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2);
210 update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3);
211 }
212}
213
214
215/* for the 128-bit key: key[0]...key[15]
216* key[0] is the least significant byte of ctx->key[0] (K_0);
217* key[3] is the most significant byte of ctx->key[0] (K_0);
218* ...
219* key[12] is the least significant byte of ctx->key[3] (K_3)
220* key[15] is the most significant byte of ctx->key[3] (K_3)
221*
222* for the 128-bit iv: iv[0]...iv[15]
223* iv[0] is the least significant byte of ctx->iv[0] (IV_0);
224* iv[3] is the most significant byte of ctx->iv[0] (IV_0);
225* ...
226* iv[12] is the least significant byte of ctx->iv[3] (IV_3)
227* iv[15] is the most significant byte of ctx->iv[3] (IV_3)
228*/
229
230
231
232static void Hc128_SetIV(HC128* ctx, const byte* inIv)
233{
234 word32 i;
235 word32 iv[4];
236
237 if (inIv)
238 XMEMCPY(iv, inIv, sizeof(iv));
239 else
240 XMEMSET(iv, 0, sizeof(iv));
241
242 for (i = 0; i < (128 >> 5); i++)
243 ctx->iv[i] = LITTLE32(iv[i]);
244
245 for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4];
246
247 /* expand the key and IV into the table T */
248 /* (expand the key and IV into the table P and Q) */
249
250 for (i = 0; i < 8; i++) ctx->T[i] = ctx->key[i];
251 for (i = 8; i < 16; i++) ctx->T[i] = ctx->iv[i-8];
252
253 for (i = 16; i < (256+16); i++)
254 ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) +
255 ctx->T[i-16]+i;
256
257 for (i = 0; i < 16; i++) ctx->T[i] = ctx->T[256+i];
258
259 for (i = 16; i < 1024; i++)
260 ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) +
261 ctx->T[i-16]+256+i;
262
263 /* initialize counter1024, X and Y */
264 ctx->counter1024 = 0;
265 for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i];
266 for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i];
267
268 /* run the cipher 1024 steps before generating the output */
269 for (i = 0; i < 64; i++) setup_update(ctx);
270}
271
272
273static INLINE int DoKey(HC128* ctx, const byte* key, const byte* iv)
274{
275 word32 i;
276
277 /* Key size in bits 128 */
278 for (i = 0; i < (128 >> 5); i++)
279 ctx->key[i] = LITTLE32(((word32*)key)[i]);
280
281 for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4];
282
283 Hc128_SetIV(ctx, iv);
284
285 return 0;
286}
287
288
289/* Key setup */
290int wc_Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv)
291{
292#ifdef XSTREAM_ALIGN
293 if ((wolfssl_word)key % 4) {
294 int alignKey[4];
295
296 /* iv gets aligned in SetIV */
297 WOLFSSL_MSG("Hc128SetKey unaligned key");
298
299 XMEMCPY(alignKey, key, sizeof(alignKey));
300
301 return DoKey(ctx, (const byte*)alignKey, iv);
302 }
303#endif /* XSTREAM_ALIGN */
304
305 return DoKey(ctx, key, iv);
306}
307
308
309
310/* The following defines the encryption of data stream */
311static INLINE int DoProcess(HC128* ctx, byte* output, const byte* input,
312 word32 msglen)
313{
314 word32 i, keystream[16];
315
316 for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64)
317 {
318 generate_keystream(ctx, keystream);
319
320 /* unroll loop */
321 ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]);
322 ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]);
323 ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]);
324 ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]);
325 ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]);
326 ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]);
327 ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]);
328 ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]);
329 ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]);
330 ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]);
331 ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]);
332 ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]);
333 ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]);
334 ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]);
335 ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]);
336 ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]);
337 }
338
339 if (msglen > 0)
340 {
341 XMEMSET(keystream, 0, sizeof(keystream)); /* hush the static analysis */
342 generate_keystream(ctx, keystream);
343
344#ifdef BIG_ENDIAN_ORDER
345 {
346 word32 wordsLeft = msglen / sizeof(word32);
347 if (msglen % sizeof(word32)) wordsLeft++;
348
349 ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32));
350 }
351#endif
352
353 for (i = 0; i < msglen; i++)
354 output[i] = input[i] ^ ((byte*)keystream)[i];
355 }
356
357 return 0;
358}
359
360
361/* Encrypt/decrypt a message of any size */
362int wc_Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen)
363{
364#ifdef XSTREAM_ALIGN
365 if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) {
366 #ifndef NO_WOLFSSL_ALLOC_ALIGN
367 byte* tmp;
368 WOLFSSL_MSG("Hc128Process unaligned");
369
370 tmp = (byte*)XMALLOC(msglen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
371 if (tmp == NULL) return MEMORY_E;
372
373 XMEMCPY(tmp, input, msglen);
374 DoProcess(ctx, tmp, tmp, msglen);
375 XMEMCPY(output, tmp, msglen);
376
377 XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER);
378
379 return 0;
380 #else
381 return BAD_ALIGN_E;
382 #endif
383 }
384#endif /* XSTREAM_ALIGN */
385
386 return DoProcess(ctx, output, input, msglen);
387}
388
389
390#else /* HAVE_HC128 */
391
392
393#ifdef _MSC_VER
394 /* 4206 warning for blank file */
395 #pragma warning(disable: 4206)
396#endif
397
398
399#endif /* HAVE_HC128 */
Note: See TracBrowser for help on using the repository browser.