/* dsa.c * * Copyright (C) 2006-2015 wolfSSL Inc. * * This file is part of wolfSSL. (formerly known as CyaSSL) * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef HAVE_CONFIG_H #include #endif #include #ifndef NO_DSA #include #include #include #include #include #include enum { DSA_HALF_SIZE = 20, /* r and s size */ DSA_SIG_SIZE = 40 /* signature size */ }; #ifdef min #define WOLFSSL_HAVE_MIN #endif #ifndef WOLFSSL_HAVE_MIN #define WOLFSSL_HAVE_MIN static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* WOLFSSL_HAVE_MIN */ void wc_InitDsaKey(DsaKey* key) { key->type = -1; /* haven't decided yet */ /* TomsFastMath doesn't use memory allocation */ #ifndef USE_FAST_MATH key->p.dp = 0; /* public alloc parts */ key->q.dp = 0; key->g.dp = 0; key->y.dp = 0; key->x.dp = 0; /* private alloc parts */ #endif } void wc_FreeDsaKey(DsaKey* key) { (void)key; /* TomsFastMath doesn't use memory allocation */ #ifndef USE_FAST_MATH if (key->type == DSA_PRIVATE) mp_clear(&key->x); mp_clear(&key->y); mp_clear(&key->g); mp_clear(&key->q); mp_clear(&key->p); #endif } #ifdef WOLFSSL_KEY_GEN int wc_MakeDsaKey(WC_RNG *rng, DsaKey *dsa) { unsigned char *buf; int qsize, err; if (rng == NULL || dsa == NULL) return BAD_FUNC_ARG; qsize = mp_unsigned_bin_size(&dsa->q); if (qsize == 0) return BAD_FUNC_ARG; /* allocate ram */ buf = (unsigned char *)XMALLOC(qsize, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) return MEMORY_E; if (mp_init(&dsa->x) != MP_OKAY) { XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return MP_INIT_E; } do { /* make a random exponent mod q */ err = wc_RNG_GenerateBlock(rng, buf, qsize); if (err != MP_OKAY) { mp_clear(&dsa->x); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; } err = mp_read_unsigned_bin(&dsa->x, buf, qsize); if (err != MP_OKAY) { mp_clear(&dsa->x); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; } } while (mp_cmp_d(&dsa->x, 1) != MP_GT); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (mp_init(&dsa->y) != MP_OKAY) { mp_clear(&dsa->x); return MP_INIT_E; } /* public key : y = g^x mod p */ err = mp_exptmod(&dsa->g, &dsa->x, &dsa->p, &dsa->y); if (err != MP_OKAY) { mp_clear(&dsa->x); mp_clear(&dsa->y); return err; } dsa->type = DSA_PRIVATE; return MP_OKAY; } /* modulus_size in bits */ int wc_MakeDsaParameters(WC_RNG *rng, int modulus_size, DsaKey *dsa) { mp_int tmp, tmp2; int err, msize, qsize, loop_check_prime = 0, check_prime = MP_NO; unsigned char *buf; if (rng == NULL || dsa == NULL) return BAD_FUNC_ARG; /* set group size in bytes from modulus size * FIPS 186-4 defines valid values (1024, 160) (2048, 256) (3072, 256) */ switch (modulus_size) { case 1024: qsize = 20; break; case 2048: case 3072: qsize = 32; break; default: return BAD_FUNC_ARG; break; } /* modulus size in bytes */ msize = modulus_size / 8; /* allocate ram */ buf = (unsigned char *)XMALLOC(msize - qsize, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { return MEMORY_E; } /* make a random string that will be multplied against q */ err = wc_RNG_GenerateBlock(rng, buf, msize - qsize); if (err != MP_OKAY) { XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; } /* force magnitude */ buf[0] |= 0xC0; /* force even */ buf[msize - qsize - 1] &= ~1; if (mp_init_multi(&tmp2, &dsa->p, &dsa->q, 0, 0, 0) != MP_OKAY) { mp_clear(&dsa->q); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return MP_INIT_E; } err = mp_read_unsigned_bin(&tmp2, buf, msize - qsize); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp2); XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; } XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); /* make our prime q */ err = mp_rand_prime(&dsa->q, qsize, rng, NULL); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp2); return err; } /* p = random * q */ err = mp_mul(&dsa->q, &tmp2, &dsa->p); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp2); return err; } /* p = random * q + 1, so q is a prime divisor of p-1 */ err = mp_add_d(&dsa->p, 1, &dsa->p); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp2); return err; } if (mp_init(&tmp) != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp2); return MP_INIT_E; } /* tmp = 2q */ err = mp_add(&dsa->q, &dsa->q, &tmp); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp); mp_clear(&tmp2); return err; } /* loop until p is prime */ while (check_prime == MP_NO) { err = mp_prime_is_prime(&dsa->p, 8, &check_prime); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp); mp_clear(&tmp2); return err; } if (check_prime != MP_YES) { /* p += 2q */ err = mp_add(&tmp, &dsa->p, &dsa->p); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp); mp_clear(&tmp2); return err; } loop_check_prime++; } } /* tmp2 += (2*loop_check_prime) * to have p = (q * tmp2) + 1 prime */ if (loop_check_prime) { err = mp_add_d(&tmp2, 2*loop_check_prime, &tmp2); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp); mp_clear(&tmp2); return err; } } if (mp_init(&dsa->g) != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&tmp); mp_clear(&tmp2); return MP_INIT_E; } /* find a value g for which g^tmp2 != 1 */ mp_set(&dsa->g, 1); do { err = mp_add_d(&dsa->g, 1, &dsa->g); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&dsa->g); mp_clear(&tmp); mp_clear(&tmp2); return err; } err = mp_exptmod(&dsa->g, &tmp2, &dsa->p, &tmp); if (err != MP_OKAY) { mp_clear(&dsa->q); mp_clear(&dsa->p); mp_clear(&dsa->g); mp_clear(&tmp); mp_clear(&tmp2); return err; } } while (mp_cmp_d(&tmp, 1) == MP_EQ); /* at this point tmp generates a group of order q mod p */ mp_exch(&tmp, &dsa->g); mp_clear(&tmp); mp_clear(&tmp2); return MP_OKAY; } #endif /* WOLFSSL_KEY_GEN */ int wc_DsaSign(const byte* digest, byte* out, DsaKey* key, WC_RNG* rng) { mp_int k, kInv, r, s, H; int ret, sz; byte buffer[DSA_HALF_SIZE]; sz = min(sizeof(buffer), mp_unsigned_bin_size(&key->q)); /* generate k */ ret = wc_RNG_GenerateBlock(rng, buffer, sz); if (ret != 0) return ret; buffer[0] |= 0x0C; if (mp_init_multi(&k, &kInv, &r, &s, &H, 0) != MP_OKAY) return MP_INIT_E; if (mp_read_unsigned_bin(&k, buffer, sz) != MP_OKAY) ret = MP_READ_E; if (ret == 0 && mp_cmp_d(&k, 1) != MP_GT) ret = MP_CMP_E; /* inverse k mod q */ if (ret == 0 && mp_invmod(&k, &key->q, &kInv) != MP_OKAY) ret = MP_INVMOD_E; /* generate r, r = (g exp k mod p) mod q */ if (ret == 0 && mp_exptmod(&key->g, &k, &key->p, &r) != MP_OKAY) ret = MP_EXPTMOD_E; if (ret == 0 && mp_mod(&r, &key->q, &r) != MP_OKAY) ret = MP_MOD_E; /* generate H from sha digest */ if (ret == 0 && mp_read_unsigned_bin(&H, digest,SHA_DIGEST_SIZE) != MP_OKAY) ret = MP_READ_E; /* generate s, s = (kInv * (H + x*r)) % q */ if (ret == 0 && mp_mul(&key->x, &r, &s) != MP_OKAY) ret = MP_MUL_E; if (ret == 0 && mp_add(&s, &H, &s) != MP_OKAY) ret = MP_ADD_E; if (ret == 0 && mp_mulmod(&s, &kInv, &key->q, &s) != MP_OKAY) ret = MP_MULMOD_E; /* write out */ if (ret == 0) { int rSz = mp_unsigned_bin_size(&r); int sSz = mp_unsigned_bin_size(&s); if (rSz == DSA_HALF_SIZE - 1) { out[0] = 0; out++; } if (mp_to_unsigned_bin(&r, out) != MP_OKAY) ret = MP_TO_E; else { if (sSz == DSA_HALF_SIZE - 1) { out[rSz] = 0; out++; } ret = mp_to_unsigned_bin(&s, out + rSz); } } mp_clear(&H); mp_clear(&s); mp_clear(&r); mp_clear(&kInv); mp_clear(&k); return ret; } int wc_DsaVerify(const byte* digest, const byte* sig, DsaKey* key, int* answer) { mp_int w, u1, u2, v, r, s; int ret = 0; if (mp_init_multi(&w, &u1, &u2, &v, &r, &s) != MP_OKAY) return MP_INIT_E; /* set r and s from signature */ if (mp_read_unsigned_bin(&r, sig, DSA_HALF_SIZE) != MP_OKAY || mp_read_unsigned_bin(&s, sig + DSA_HALF_SIZE, DSA_HALF_SIZE) != MP_OKAY) ret = MP_READ_E; /* sanity checks */ if (ret == 0) { if (mp_iszero(&r) == MP_YES || mp_iszero(&s) == MP_YES || mp_cmp(&r, &key->q) != MP_LT || mp_cmp(&s, &key->q) != MP_LT) { ret = MP_ZERO_E; } } /* put H into u1 from sha digest */ if (ret == 0 && mp_read_unsigned_bin(&u1,digest,SHA_DIGEST_SIZE) != MP_OKAY) ret = MP_READ_E; /* w = s invmod q */ if (ret == 0 && mp_invmod(&s, &key->q, &w) != MP_OKAY) ret = MP_INVMOD_E; /* u1 = (H * w) % q */ if (ret == 0 && mp_mulmod(&u1, &w, &key->q, &u1) != MP_OKAY) ret = MP_MULMOD_E; /* u2 = (r * w) % q */ if (ret == 0 && mp_mulmod(&r, &w, &key->q, &u2) != MP_OKAY) ret = MP_MULMOD_E; /* verify v = ((g^u1 * y^u2) mod p) mod q */ if (ret == 0 && mp_exptmod(&key->g, &u1, &key->p, &u1) != MP_OKAY) ret = MP_EXPTMOD_E; if (ret == 0 && mp_exptmod(&key->y, &u2, &key->p, &u2) != MP_OKAY) ret = MP_EXPTMOD_E; if (ret == 0 && mp_mulmod(&u1, &u2, &key->p, &v) != MP_OKAY) ret = MP_MULMOD_E; if (ret == 0 && mp_mod(&v, &key->q, &v) != MP_OKAY) ret = MP_MULMOD_E; /* do they match */ if (ret == 0 && mp_cmp(&r, &v) == MP_EQ) *answer = 1; else *answer = 0; mp_clear(&s); mp_clear(&r); mp_clear(&u1); mp_clear(&u2); mp_clear(&w); mp_clear(&v); return ret; } #endif /* NO_DSA */