source: EcnlProtoTool/trunk/tcc-0.9.27/tcc-doc.texi@ 331

Last change on this file since 331 was 331, checked in by coas-nagasima, 6 years ago

prototoolに関連するプロジェクトをnewlibからmuslを使うよう変更・更新
ntshellをnewlibの下位の実装から、muslのsyscallの実装に変更・更新
以下のOSSをアップデート
・mruby-1.3.0
・musl-1.1.18
・onigmo-6.1.3
・tcc-0.9.27
以下のOSSを追加
・openssl-1.1.0e
・curl-7.57.0
・zlib-1.2.11
以下のmrbgemsを追加
・iij/mruby-digest
・iij/mruby-env
・iij/mruby-errno
・iij/mruby-iijson
・iij/mruby-ipaddr
・iij/mruby-mock
・iij/mruby-require
・iij/mruby-tls-openssl

File size: 35.7 KB
Line 
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename tcc-doc.info
4@settitle Tiny C Compiler Reference Documentation
5@dircategory Software development
6@direntry
7* TCC: (tcc-doc). The Tiny C Compiler.
8@end direntry
9@c %**end of header
10
11@include config.texi
12
13@iftex
14@titlepage
15@afourpaper
16@sp 7
17@center @titlefont{Tiny C Compiler Reference Documentation}
18@sp 3
19@end titlepage
20@headings double
21@end iftex
22
23@contents
24
25@node Top, Introduction, (dir), (dir)
26@top Tiny C Compiler Reference Documentation
27
28This manual documents version @value{VERSION} of the Tiny C Compiler.
29
30@menu
31* Introduction:: Introduction to tcc.
32* Invoke:: Invocation of tcc (command line, options).
33* Clang:: ANSI C and extensions.
34* asm:: Assembler syntax.
35* linker:: Output file generation and supported targets.
36* Bounds:: Automatic bounds-checking of C code.
37* Libtcc:: The libtcc library.
38* devel:: Guide for Developers.
39@end menu
40
41
42@node Introduction
43@chapter Introduction
44
45TinyCC (aka TCC) is a small but hyper fast C compiler. Unlike other C
46compilers, it is meant to be self-relying: you do not need an
47external assembler or linker because TCC does that for you.
48
49TCC compiles so @emph{fast} that even for big projects @code{Makefile}s may
50not be necessary.
51
52TCC not only supports ANSI C, but also most of the new ISO C99
53standard and many GNUC extensions including inline assembly.
54
55TCC can also be used to make @emph{C scripts}, i.e. pieces of C source
56that you run as a Perl or Python script. Compilation is so fast that
57your script will be as fast as if it was an executable.
58
59TCC can also automatically generate memory and bound checks
60(@pxref{Bounds}) while allowing all C pointers operations. TCC can do
61these checks even if non patched libraries are used.
62
63With @code{libtcc}, you can use TCC as a backend for dynamic code
64generation (@pxref{Libtcc}).
65
66TCC mainly supports the i386 target on Linux and Windows. There are alpha
67ports for the ARM (@code{arm-tcc}) and the TMS320C67xx targets
68(@code{c67-tcc}). More information about the ARM port is available at
69@url{http://lists.gnu.org/archive/html/tinycc-devel/2003-10/msg00044.html}.
70
71For usage on Windows, see also @url{tcc-win32.txt}.
72
73@node Invoke
74@chapter Command line invocation
75
76@section Quick start
77
78@example
79@c man begin SYNOPSIS
80usage: tcc [options] [@var{infile1} @var{infile2}@dots{}] [@option{-run} @var{infile} @var{args}@dots{}]
81@c man end
82@end example
83
84@noindent
85@c man begin DESCRIPTION
86TCC options are a very much like gcc options. The main difference is that TCC
87can also execute directly the resulting program and give it runtime
88arguments.
89
90Here are some examples to understand the logic:
91
92@table @code
93@item @samp{tcc -run a.c}
94Compile @file{a.c} and execute it directly
95
96@item @samp{tcc -run a.c arg1}
97Compile a.c and execute it directly. arg1 is given as first argument to
98the @code{main()} of a.c.
99
100@item @samp{tcc a.c -run b.c arg1}
101Compile @file{a.c} and @file{b.c}, link them together and execute them. arg1 is given
102as first argument to the @code{main()} of the resulting program.
103@ignore
104Because multiple C files are specified, @option{--} are necessary to clearly
105separate the program arguments from the TCC options.
106@end ignore
107
108@item @samp{tcc -o myprog a.c b.c}
109Compile @file{a.c} and @file{b.c}, link them and generate the executable @file{myprog}.
110
111@item @samp{tcc -o myprog a.o b.o}
112link @file{a.o} and @file{b.o} together and generate the executable @file{myprog}.
113
114@item @samp{tcc -c a.c}
115Compile @file{a.c} and generate object file @file{a.o}.
116
117@item @samp{tcc -c asmfile.S}
118Preprocess with C preprocess and assemble @file{asmfile.S} and generate
119object file @file{asmfile.o}.
120
121@item @samp{tcc -c asmfile.s}
122Assemble (but not preprocess) @file{asmfile.s} and generate object file
123@file{asmfile.o}.
124
125@item @samp{tcc -r -o ab.o a.c b.c}
126Compile @file{a.c} and @file{b.c}, link them together and generate the object file @file{ab.o}.
127
128@end table
129
130Scripting:
131
132TCC can be invoked from @emph{scripts}, just as shell scripts. You just
133need to add @code{#!/usr/local/bin/tcc -run} at the start of your C source:
134
135@example
136#!/usr/local/bin/tcc -run
137#include <stdio.h>
138
139int main()
140@{
141 printf("Hello World\n");
142 return 0;
143@}
144@end example
145
146TCC can read C source code from @emph{standard input} when @option{-} is used in
147place of @option{infile}. Example:
148
149@example
150echo 'main()@{puts("hello");@}' | tcc -run -
151@end example
152@c man end
153
154@section Option summary
155
156General Options:
157
158@c man begin OPTIONS
159@table @option
160@item -c
161Generate an object file.
162
163@item -o outfile
164Put object file, executable, or dll into output file @file{outfile}.
165
166@item -run source [args...]
167Compile file @var{source} and run it with the command line arguments
168@var{args}. In order to be able to give more than one argument to a
169script, several TCC options can be given @emph{after} the
170@option{-run} option, separated by spaces:
171@example
172tcc "-run -L/usr/X11R6/lib -lX11" ex4.c
173@end example
174In a script, it gives the following header:
175@example
176#!/usr/local/bin/tcc -run -L/usr/X11R6/lib -lX11
177@end example
178
179@item -v
180Display TCC version.
181
182@item -vv
183Show included files. As sole argument, print search dirs. -vvv shows tries too.
184
185@item -bench
186Display compilation statistics.
187
188@end table
189
190Preprocessor options:
191
192@table @option
193@item -Idir
194Specify an additional include path. Include paths are searched in the
195order they are specified.
196
197System include paths are always searched after. The default system
198include paths are: @file{/usr/local/include}, @file{/usr/include}
199and @file{PREFIX/lib/tcc/include}. (@file{PREFIX} is usually
200@file{/usr} or @file{/usr/local}).
201
202@item -Dsym[=val]
203Define preprocessor symbol @samp{sym} to
204val. If val is not present, its value is @samp{1}. Function-like macros can
205also be defined: @option{-DF(a)=a+1}
206
207@item -Usym
208Undefine preprocessor symbol @samp{sym}.
209
210@item -E
211Preprocess only, to stdout or file (with -o).
212
213@end table
214
215Compilation flags:
216
217Note: each of the following options has a negative form beginning with
218@option{-fno-}.
219
220@table @option
221@item -funsigned-char
222Let the @code{char} type be unsigned.
223
224@item -fsigned-char
225Let the @code{char} type be signed.
226
227@item -fno-common
228Do not generate common symbols for uninitialized data.
229
230@item -fleading-underscore
231Add a leading underscore at the beginning of each C symbol.
232
233@item -fms-extensions
234Allow a MS C compiler extensions to the language. Currently this
235assumes a nested named structure declaration without an identifier
236behaves like an unnamed one.
237
238@item -fdollars-in-identifiers
239Allow dollar signs in identifiers
240
241@end table
242
243Warning options:
244
245@table @option
246@item -w
247Disable all warnings.
248
249@end table
250
251Note: each of the following warning options has a negative form beginning with
252@option{-Wno-}.
253
254@table @option
255@item -Wimplicit-function-declaration
256Warn about implicit function declaration.
257
258@item -Wunsupported
259Warn about unsupported GCC features that are ignored by TCC.
260
261@item -Wwrite-strings
262Make string constants be of type @code{const char *} instead of @code{char
263*}.
264
265@item -Werror
266Abort compilation if warnings are issued.
267
268@item -Wall
269Activate all warnings, except @option{-Werror}, @option{-Wunusupported} and
270@option{-Wwrite-strings}.
271
272@end table
273
274Linker options:
275
276@table @option
277@item -Ldir
278Specify an additional static library path for the @option{-l} option. The
279default library paths are @file{/usr/local/lib}, @file{/usr/lib} and @file{/lib}.
280
281@item -lxxx
282Link your program with dynamic library libxxx.so or static library
283libxxx.a. The library is searched in the paths specified by the
284@option{-L} option and @env{LIBRARY_PATH} variable.
285
286@item -Bdir
287Set the path where the tcc internal libraries (and include files) can be
288found (default is @file{PREFIX/lib/tcc}).
289
290@item -shared
291Generate a shared library instead of an executable.
292
293@item -soname name
294set name for shared library to be used at runtime
295
296@item -static
297Generate a statically linked executable (default is a shared linked
298executable).
299
300@item -rdynamic
301Export global symbols to the dynamic linker. It is useful when a library
302opened with @code{dlopen()} needs to access executable symbols.
303
304@item -r
305Generate an object file combining all input files.
306
307@item -Wl,-rpath=path
308Put custom search path for dynamic libraries into executable.
309
310@item -Wl,--enable-new-dtags
311When putting a custom search path for dynamic libraries into the executable,
312create the new ELF dynamic tag DT_RUNPATH instead of the old legacy DT_RPATH.
313
314@item -Wl,--oformat=fmt
315Use @var{fmt} as output format. The supported output formats are:
316@table @code
317@item elf32-i386
318ELF output format (default)
319@item binary
320Binary image (only for executable output)
321@item coff
322COFF output format (only for executable output for TMS320C67xx target)
323@end table
324
325@item -Wl,-subsystem=console/gui/wince/...
326Set type for PE (Windows) executables.
327
328@item -Wl,-[Ttext=# | section-alignment=# | file-alignment=# | image-base=# | stack=#]
329Modify executable layout.
330
331@item -Wl,-Bsymbolic
332Set DT_SYMBOLIC tag.
333
334@item -Wl,-(no-)whole-archive
335Turn on/off linking of all objects in archives.
336
337@end table
338
339Debugger options:
340
341@table @option
342@item -g
343Generate run time debug information so that you get clear run time
344error messages: @code{ test.c:68: in function 'test5()': dereferencing
345invalid pointer} instead of the laconic @code{Segmentation
346fault}.
347
348@item -b
349Generate additional support code to check
350memory allocations and array/pointer bounds. @option{-g} is implied. Note
351that the generated code is slower and bigger in this case.
352
353Note: @option{-b} is only available on i386 when using libtcc for the moment.
354
355@item -bt N
356Display N callers in stack traces. This is useful with @option{-g} or
357@option{-b}.
358
359@end table
360
361Misc options:
362
363@table @option
364@item -MD
365Generate makefile fragment with dependencies.
366
367@item -MF depfile
368Use @file{depfile} as output for -MD.
369
370@item -print-search-dirs
371Print the configured installation directory and a list of library
372and include directories tcc will search.
373
374@item -dumpversion
375Print version.
376
377@end table
378
379Target specific options:
380
381@table @option
382@item -mms-bitfields
383Use an algorithm for bitfield alignment consistent with MSVC. Default is
384gcc's algorithm.
385
386@item -mfloat-abi (ARM only)
387Select the float ABI. Possible values: @code{softfp} and @code{hard}
388
389@item -mno-sse
390Do not use sse registers on x86_64
391
392@item -m32, -m64
393Pass command line to the i386/x86_64 cross compiler.
394
395@end table
396
397Note: GCC options @option{-Ox}, @option{-fx} and @option{-mx} are
398ignored.
399@c man end
400
401@c man begin ENVIRONMENT
402Environment variables that affect how tcc operates.
403
404@table @option
405
406@item CPATH
407@item C_INCLUDE_PATH
408A colon-separated list of directories searched for include files,
409directories given with @option{-I} are searched first.
410
411@item LIBRARY_PATH
412A colon-separated list of directories searched for libraries for the
413@option{-l} option, directories given with @option{-L} are searched first.
414
415@end table
416
417@c man end
418
419@ignore
420
421@setfilename tcc
422@settitle Tiny C Compiler
423
424@c man begin SEEALSO
425cpp(1),
426gcc(1)
427@c man end
428
429@c man begin AUTHOR
430Fabrice Bellard
431@c man end
432
433@end ignore
434
435@node Clang
436@chapter C language support
437
438@section ANSI C
439
440TCC implements all the ANSI C standard, including structure bit fields
441and floating point numbers (@code{long double}, @code{double}, and
442@code{float} fully supported).
443
444@section ISOC99 extensions
445
446TCC implements many features of the new C standard: ISO C99. Currently
447missing items are: complex and imaginary numbers.
448
449Currently implemented ISOC99 features:
450
451@itemize
452
453@item variable length arrays.
454
455@item 64 bit @code{long long} types are fully supported.
456
457@item The boolean type @code{_Bool} is supported.
458
459@item @code{__func__} is a string variable containing the current
460function name.
461
462@item Variadic macros: @code{__VA_ARGS__} can be used for
463 function-like macros:
464@example
465 #define dprintf(level, __VA_ARGS__) printf(__VA_ARGS__)
466@end example
467
468@noindent
469@code{dprintf} can then be used with a variable number of parameters.
470
471@item Declarations can appear anywhere in a block (as in C++).
472
473@item Array and struct/union elements can be initialized in any order by
474 using designators:
475@example
476 struct @{ int x, y; @} st[10] = @{ [0].x = 1, [0].y = 2 @};
477
478 int tab[10] = @{ 1, 2, [5] = 5, [9] = 9@};
479@end example
480
481@item Compound initializers are supported:
482@example
483 int *p = (int [])@{ 1, 2, 3 @};
484@end example
485to initialize a pointer pointing to an initialized array. The same
486works for structures and strings.
487
488@item Hexadecimal floating point constants are supported:
489@example
490 double d = 0x1234p10;
491@end example
492
493@noindent
494is the same as writing
495@example
496 double d = 4771840.0;
497@end example
498
499@item @code{inline} keyword is ignored.
500
501@item @code{restrict} keyword is ignored.
502@end itemize
503
504@section GNU C extensions
505
506TCC implements some GNU C extensions:
507
508@itemize
509
510@item array designators can be used without '=':
511@example
512 int a[10] = @{ [0] 1, [5] 2, 3, 4 @};
513@end example
514
515@item Structure field designators can be a label:
516@example
517 struct @{ int x, y; @} st = @{ x: 1, y: 1@};
518@end example
519instead of
520@example
521 struct @{ int x, y; @} st = @{ .x = 1, .y = 1@};
522@end example
523
524@item @code{\e} is ASCII character 27.
525
526@item case ranges : ranges can be used in @code{case}s:
527@example
528 switch(a) @{
529 case 1 @dots{} 9:
530 printf("range 1 to 9\n");
531 break;
532 default:
533 printf("unexpected\n");
534 break;
535 @}
536@end example
537
538@cindex aligned attribute
539@cindex packed attribute
540@cindex section attribute
541@cindex unused attribute
542@cindex cdecl attribute
543@cindex stdcall attribute
544@cindex regparm attribute
545@cindex dllexport attribute
546
547@item The keyword @code{__attribute__} is handled to specify variable or
548function attributes. The following attributes are supported:
549 @itemize
550
551 @item @code{aligned(n)}: align a variable or a structure field to n bytes
552(must be a power of two).
553
554 @item @code{packed}: force alignment of a variable or a structure field to
555 1.
556
557 @item @code{section(name)}: generate function or data in assembly section
558name (name is a string containing the section name) instead of the default
559section.
560
561 @item @code{unused}: specify that the variable or the function is unused.
562
563 @item @code{cdecl}: use standard C calling convention (default).
564
565 @item @code{stdcall}: use Pascal-like calling convention.
566
567 @item @code{regparm(n)}: use fast i386 calling convention. @var{n} must be
568between 1 and 3. The first @var{n} function parameters are respectively put in
569registers @code{%eax}, @code{%edx} and @code{%ecx}.
570
571 @item @code{dllexport}: export function from dll/executable (win32 only)
572
573 @end itemize
574
575Here are some examples:
576@example
577 int a __attribute__ ((aligned(8), section(".mysection")));
578@end example
579
580@noindent
581align variable @code{a} to 8 bytes and put it in section @code{.mysection}.
582
583@example
584 int my_add(int a, int b) __attribute__ ((section(".mycodesection")))
585 @{
586 return a + b;
587 @}
588@end example
589
590@noindent
591generate function @code{my_add} in section @code{.mycodesection}.
592
593@item GNU style variadic macros:
594@example
595 #define dprintf(fmt, args@dots{}) printf(fmt, ## args)
596
597 dprintf("no arg\n");
598 dprintf("one arg %d\n", 1);
599@end example
600
601@item @code{__FUNCTION__} is interpreted as C99 @code{__func__}
602(so it has not exactly the same semantics as string literal GNUC
603where it is a string literal).
604
605@item The @code{__alignof__} keyword can be used as @code{sizeof}
606to get the alignment of a type or an expression.
607
608@item The @code{typeof(x)} returns the type of @code{x}.
609@code{x} is an expression or a type.
610
611@item Computed gotos: @code{&&label} returns a pointer of type
612@code{void *} on the goto label @code{label}. @code{goto *expr} can be
613used to jump on the pointer resulting from @code{expr}.
614
615@item Inline assembly with asm instruction:
616@cindex inline assembly
617@cindex assembly, inline
618@cindex __asm__
619@example
620static inline void * my_memcpy(void * to, const void * from, size_t n)
621@{
622int d0, d1, d2;
623__asm__ __volatile__(
624 "rep ; movsl\n\t"
625 "testb $2,%b4\n\t"
626 "je 1f\n\t"
627 "movsw\n"
628 "1:\ttestb $1,%b4\n\t"
629 "je 2f\n\t"
630 "movsb\n"
631 "2:"
632 : "=&c" (d0), "=&D" (d1), "=&S" (d2)
633 :"0" (n/4), "q" (n),"1" ((long) to),"2" ((long) from)
634 : "memory");
635return (to);
636@}
637@end example
638
639@noindent
640@cindex gas
641TCC includes its own x86 inline assembler with a @code{gas}-like (GNU
642assembler) syntax. No intermediate files are generated. GCC 3.x named
643operands are supported.
644
645@item @code{__builtin_types_compatible_p()} and @code{__builtin_constant_p()}
646are supported.
647
648@item @code{#pragma pack} is supported for win32 compatibility.
649
650@end itemize
651
652@section TinyCC extensions
653
654@itemize
655
656@item @code{__TINYC__} is a predefined macro to indicate that you use TCC.
657
658@item @code{#!} at the start of a line is ignored to allow scripting.
659
660@item Binary digits can be entered (@code{0b101} instead of
661@code{5}).
662
663@item @code{__BOUNDS_CHECKING_ON} is defined if bound checking is activated.
664
665@end itemize
666
667@node asm
668@chapter TinyCC Assembler
669
670Since version 0.9.16, TinyCC integrates its own assembler. TinyCC
671assembler supports a gas-like syntax (GNU assembler). You can
672deactivate assembler support if you want a smaller TinyCC executable
673(the C compiler does not rely on the assembler).
674
675TinyCC Assembler is used to handle files with @file{.S} (C
676preprocessed assembler) and @file{.s} extensions. It is also used to
677handle the GNU inline assembler with the @code{asm} keyword.
678
679@section Syntax
680
681TinyCC Assembler supports most of the gas syntax. The tokens are the
682same as C.
683
684@itemize
685
686@item C and C++ comments are supported.
687
688@item Identifiers are the same as C, so you cannot use '.' or '$'.
689
690@item Only 32 bit integer numbers are supported.
691
692@end itemize
693
694@section Expressions
695
696@itemize
697
698@item Integers in decimal, octal and hexa are supported.
699
700@item Unary operators: +, -, ~.
701
702@item Binary operators in decreasing priority order:
703
704@enumerate
705@item *, /, %
706@item &, |, ^
707@item +, -
708@end enumerate
709
710@item A value is either an absolute number or a label plus an offset.
711All operators accept absolute values except '+' and '-'. '+' or '-' can be
712used to add an offset to a label. '-' supports two labels only if they
713are the same or if they are both defined and in the same section.
714
715@end itemize
716
717@section Labels
718
719@itemize
720
721@item All labels are considered as local, except undefined ones.
722
723@item Numeric labels can be used as local @code{gas}-like labels.
724They can be defined several times in the same source. Use 'b'
725(backward) or 'f' (forward) as suffix to reference them:
726
727@example
728 1:
729 jmp 1b /* jump to '1' label before */
730 jmp 1f /* jump to '1' label after */
731 1:
732@end example
733
734@end itemize
735
736@section Directives
737@cindex assembler directives
738@cindex directives, assembler
739@cindex align directive
740@cindex skip directive
741@cindex space directive
742@cindex byte directive
743@cindex word directive
744@cindex short directive
745@cindex int directive
746@cindex long directive
747@cindex quad directive
748@cindex globl directive
749@cindex global directive
750@cindex section directive
751@cindex text directive
752@cindex data directive
753@cindex bss directive
754@cindex fill directive
755@cindex org directive
756@cindex previous directive
757@cindex string directive
758@cindex asciz directive
759@cindex ascii directive
760
761All directives are preceded by a '.'. The following directives are
762supported:
763
764@itemize
765@item .align n[,value]
766@item .skip n[,value]
767@item .space n[,value]
768@item .byte value1[,...]
769@item .word value1[,...]
770@item .short value1[,...]
771@item .int value1[,...]
772@item .long value1[,...]
773@item .quad immediate_value1[,...]
774@item .globl symbol
775@item .global symbol
776@item .section section
777@item .text
778@item .data
779@item .bss
780@item .fill repeat[,size[,value]]
781@item .org n
782@item .previous
783@item .string string[,...]
784@item .asciz string[,...]
785@item .ascii string[,...]
786@end itemize
787
788@section X86 Assembler
789@cindex assembler
790
791All X86 opcodes are supported. Only ATT syntax is supported (source
792then destination operand order). If no size suffix is given, TinyCC
793tries to guess it from the operand sizes.
794
795Currently, MMX opcodes are supported but not SSE ones.
796
797@node linker
798@chapter TinyCC Linker
799@cindex linker
800
801@section ELF file generation
802@cindex ELF
803
804TCC can directly output relocatable ELF files (object files),
805executable ELF files and dynamic ELF libraries without relying on an
806external linker.
807
808Dynamic ELF libraries can be output but the C compiler does not generate
809position independent code (PIC). It means that the dynamic library
810code generated by TCC cannot be factorized among processes yet.
811
812TCC linker eliminates unreferenced object code in libraries. A single pass is
813done on the object and library list, so the order in which object files and
814libraries are specified is important (same constraint as GNU ld). No grouping
815options (@option{--start-group} and @option{--end-group}) are supported.
816
817@section ELF file loader
818
819TCC can load ELF object files, archives (.a files) and dynamic
820libraries (.so).
821
822@section PE-i386 file generation
823@cindex PE-i386
824
825TCC for Windows supports the native Win32 executable file format (PE-i386). It
826generates EXE files (console and gui) and DLL files.
827
828For usage on Windows, see also tcc-win32.txt.
829
830@section GNU Linker Scripts
831@cindex scripts, linker
832@cindex linker scripts
833@cindex GROUP, linker command
834@cindex FILE, linker command
835@cindex OUTPUT_FORMAT, linker command
836@cindex TARGET, linker command
837
838Because on many Linux systems some dynamic libraries (such as
839@file{/usr/lib/libc.so}) are in fact GNU ld link scripts (horrible!),
840the TCC linker also supports a subset of GNU ld scripts.
841
842The @code{GROUP} and @code{FILE} commands are supported. @code{OUTPUT_FORMAT}
843and @code{TARGET} are ignored.
844
845Example from @file{/usr/lib/libc.so}:
846@example
847/* GNU ld script
848 Use the shared library, but some functions are only in
849 the static library, so try that secondarily. */
850GROUP ( /lib/libc.so.6 /usr/lib/libc_nonshared.a )
851@end example
852
853@node Bounds
854@chapter TinyCC Memory and Bound checks
855@cindex bound checks
856@cindex memory checks
857
858This feature is activated with the @option{-b} (@pxref{Invoke}).
859
860Note that pointer size is @emph{unchanged} and that code generated
861with bound checks is @emph{fully compatible} with unchecked
862code. When a pointer comes from unchecked code, it is assumed to be
863valid. Even very obscure C code with casts should work correctly.
864
865For more information about the ideas behind this method, see
866@url{http://www.doc.ic.ac.uk/~phjk/BoundsChecking.html}.
867
868Here are some examples of caught errors:
869
870@table @asis
871
872@item Invalid range with standard string function:
873@example
874@{
875 char tab[10];
876 memset(tab, 0, 11);
877@}
878@end example
879
880@item Out of bounds-error in global or local arrays:
881@example
882@{
883 int tab[10];
884 for(i=0;i<11;i++) @{
885 sum += tab[i];
886 @}
887@}
888@end example
889
890@item Out of bounds-error in malloc'ed data:
891@example
892@{
893 int *tab;
894 tab = malloc(20 * sizeof(int));
895 for(i=0;i<21;i++) @{
896 sum += tab4[i];
897 @}
898 free(tab);
899@}
900@end example
901
902@item Access of freed memory:
903@example
904@{
905 int *tab;
906 tab = malloc(20 * sizeof(int));
907 free(tab);
908 for(i=0;i<20;i++) @{
909 sum += tab4[i];
910 @}
911@}
912@end example
913
914@item Double free:
915@example
916@{
917 int *tab;
918 tab = malloc(20 * sizeof(int));
919 free(tab);
920 free(tab);
921@}
922@end example
923
924@end table
925
926@node Libtcc
927@chapter The @code{libtcc} library
928
929The @code{libtcc} library enables you to use TCC as a backend for
930dynamic code generation.
931
932Read the @file{libtcc.h} to have an overview of the API. Read
933@file{libtcc_test.c} to have a very simple example.
934
935The idea consists in giving a C string containing the program you want
936to compile directly to @code{libtcc}. Then you can access to any global
937symbol (function or variable) defined.
938
939@node devel
940@chapter Developer's guide
941
942This chapter gives some hints to understand how TCC works. You can skip
943it if you do not intend to modify the TCC code.
944
945@section File reading
946
947The @code{BufferedFile} structure contains the context needed to read a
948file, including the current line number. @code{tcc_open()} opens a new
949file and @code{tcc_close()} closes it. @code{inp()} returns the next
950character.
951
952@section Lexer
953
954@code{next()} reads the next token in the current
955file. @code{next_nomacro()} reads the next token without macro
956expansion.
957
958@code{tok} contains the current token (see @code{TOK_xxx})
959constants. Identifiers and keywords are also keywords. @code{tokc}
960contains additional infos about the token (for example a constant value
961if number or string token).
962
963@section Parser
964
965The parser is hardcoded (yacc is not necessary). It does only one pass,
966except:
967
968@itemize
969
970@item For initialized arrays with unknown size, a first pass
971is done to count the number of elements.
972
973@item For architectures where arguments are evaluated in
974reverse order, a first pass is done to reverse the argument order.
975
976@end itemize
977
978@section Types
979
980The types are stored in a single 'int' variable. It was chosen in the
981first stages of development when tcc was much simpler. Now, it may not
982be the best solution.
983
984@example
985#define VT_INT 0 /* integer type */
986#define VT_BYTE 1 /* signed byte type */
987#define VT_SHORT 2 /* short type */
988#define VT_VOID 3 /* void type */
989#define VT_PTR 4 /* pointer */
990#define VT_ENUM 5 /* enum definition */
991#define VT_FUNC 6 /* function type */
992#define VT_STRUCT 7 /* struct/union definition */
993#define VT_FLOAT 8 /* IEEE float */
994#define VT_DOUBLE 9 /* IEEE double */
995#define VT_LDOUBLE 10 /* IEEE long double */
996#define VT_BOOL 11 /* ISOC99 boolean type */
997#define VT_LLONG 12 /* 64 bit integer */
998#define VT_LONG 13 /* long integer (NEVER USED as type, only
999 during parsing) */
1000#define VT_BTYPE 0x000f /* mask for basic type */
1001#define VT_UNSIGNED 0x0010 /* unsigned type */
1002#define VT_ARRAY 0x0020 /* array type (also has VT_PTR) */
1003#define VT_VLA 0x20000 /* VLA type (also has VT_PTR and VT_ARRAY) */
1004#define VT_BITFIELD 0x0040 /* bitfield modifier */
1005#define VT_CONSTANT 0x0800 /* const modifier */
1006#define VT_VOLATILE 0x1000 /* volatile modifier */
1007#define VT_DEFSIGN 0x2000 /* signed type */
1008
1009#define VT_STRUCT_SHIFT 18 /* structure/enum name shift (14 bits left) */
1010@end example
1011
1012When a reference to another type is needed (for pointers, functions and
1013structures), the @code{32 - VT_STRUCT_SHIFT} high order bits are used to
1014store an identifier reference.
1015
1016The @code{VT_UNSIGNED} flag can be set for chars, shorts, ints and long
1017longs.
1018
1019Arrays are considered as pointers @code{VT_PTR} with the flag
1020@code{VT_ARRAY} set. Variable length arrays are considered as special
1021arrays and have flag @code{VT_VLA} set instead of @code{VT_ARRAY}.
1022
1023The @code{VT_BITFIELD} flag can be set for chars, shorts, ints and long
1024longs. If it is set, then the bitfield position is stored from bits
1025VT_STRUCT_SHIFT to VT_STRUCT_SHIFT + 5 and the bit field size is stored
1026from bits VT_STRUCT_SHIFT + 6 to VT_STRUCT_SHIFT + 11.
1027
1028@code{VT_LONG} is never used except during parsing.
1029
1030During parsing, the storage of an object is also stored in the type
1031integer:
1032
1033@example
1034#define VT_EXTERN 0x00000080 /* extern definition */
1035#define VT_STATIC 0x00000100 /* static variable */
1036#define VT_TYPEDEF 0x00000200 /* typedef definition */
1037#define VT_INLINE 0x00000400 /* inline definition */
1038#define VT_IMPORT 0x00004000 /* win32: extern data imported from dll */
1039#define VT_EXPORT 0x00008000 /* win32: data exported from dll */
1040#define VT_WEAK 0x00010000 /* win32: data exported from dll */
1041@end example
1042
1043@section Symbols
1044
1045All symbols are stored in hashed symbol stacks. Each symbol stack
1046contains @code{Sym} structures.
1047
1048@code{Sym.v} contains the symbol name (remember
1049an identifier is also a token, so a string is never necessary to store
1050it). @code{Sym.t} gives the type of the symbol. @code{Sym.r} is usually
1051the register in which the corresponding variable is stored. @code{Sym.c} is
1052usually a constant associated to the symbol like its address for normal
1053symbols, and the number of entries for symbols representing arrays.
1054Variable length array types use @code{Sym.c} as a location on the stack
1055which holds the runtime sizeof for the type.
1056
1057Four main symbol stacks are defined:
1058
1059@table @code
1060
1061@item define_stack
1062for the macros (@code{#define}s).
1063
1064@item global_stack
1065for the global variables, functions and types.
1066
1067@item local_stack
1068for the local variables, functions and types.
1069
1070@item global_label_stack
1071for the local labels (for @code{goto}).
1072
1073@item label_stack
1074for GCC block local labels (see the @code{__label__} keyword).
1075
1076@end table
1077
1078@code{sym_push()} is used to add a new symbol in the local symbol
1079stack. If no local symbol stack is active, it is added in the global
1080symbol stack.
1081
1082@code{sym_pop(st,b)} pops symbols from the symbol stack @var{st} until
1083the symbol @var{b} is on the top of stack. If @var{b} is NULL, the stack
1084is emptied.
1085
1086@code{sym_find(v)} return the symbol associated to the identifier
1087@var{v}. The local stack is searched first from top to bottom, then the
1088global stack.
1089
1090@section Sections
1091
1092The generated code and data are written in sections. The structure
1093@code{Section} contains all the necessary information for a given
1094section. @code{new_section()} creates a new section. ELF file semantics
1095is assumed for each section.
1096
1097The following sections are predefined:
1098
1099@table @code
1100
1101@item text_section
1102is the section containing the generated code. @var{ind} contains the
1103current position in the code section.
1104
1105@item data_section
1106contains initialized data
1107
1108@item bss_section
1109contains uninitialized data
1110
1111@item bounds_section
1112@itemx lbounds_section
1113are used when bound checking is activated
1114
1115@item stab_section
1116@itemx stabstr_section
1117are used when debugging is active to store debug information
1118
1119@item symtab_section
1120@itemx strtab_section
1121contain the exported symbols (currently only used for debugging).
1122
1123@end table
1124
1125@section Code generation
1126@cindex code generation
1127
1128@subsection Introduction
1129
1130The TCC code generator directly generates linked binary code in one
1131pass. It is rather unusual these days (see gcc for example which
1132generates text assembly), but it can be very fast and surprisingly
1133little complicated.
1134
1135The TCC code generator is register based. Optimization is only done at
1136the expression level. No intermediate representation of expression is
1137kept except the current values stored in the @emph{value stack}.
1138
1139On x86, three temporary registers are used. When more registers are
1140needed, one register is spilled into a new temporary variable on the stack.
1141
1142@subsection The value stack
1143@cindex value stack, introduction
1144
1145When an expression is parsed, its value is pushed on the value stack
1146(@var{vstack}). The top of the value stack is @var{vtop}. Each value
1147stack entry is the structure @code{SValue}.
1148
1149@code{SValue.t} is the type. @code{SValue.r} indicates how the value is
1150currently stored in the generated code. It is usually a CPU register
1151index (@code{REG_xxx} constants), but additional values and flags are
1152defined:
1153
1154@example
1155#define VT_CONST 0x00f0
1156#define VT_LLOCAL 0x00f1
1157#define VT_LOCAL 0x00f2
1158#define VT_CMP 0x00f3
1159#define VT_JMP 0x00f4
1160#define VT_JMPI 0x00f5
1161#define VT_LVAL 0x0100
1162#define VT_SYM 0x0200
1163#define VT_MUSTCAST 0x0400
1164#define VT_MUSTBOUND 0x0800
1165#define VT_BOUNDED 0x8000
1166#define VT_LVAL_BYTE 0x1000
1167#define VT_LVAL_SHORT 0x2000
1168#define VT_LVAL_UNSIGNED 0x4000
1169#define VT_LVAL_TYPE (VT_LVAL_BYTE | VT_LVAL_SHORT | VT_LVAL_UNSIGNED)
1170@end example
1171
1172@table @code
1173
1174@item VT_CONST
1175indicates that the value is a constant. It is stored in the union
1176@code{SValue.c}, depending on its type.
1177
1178@item VT_LOCAL
1179indicates a local variable pointer at offset @code{SValue.c.i} in the
1180stack.
1181
1182@item VT_CMP
1183indicates that the value is actually stored in the CPU flags (i.e. the
1184value is the consequence of a test). The value is either 0 or 1. The
1185actual CPU flags used is indicated in @code{SValue.c.i}.
1186
1187If any code is generated which destroys the CPU flags, this value MUST be
1188put in a normal register.
1189
1190@item VT_JMP
1191@itemx VT_JMPI
1192indicates that the value is the consequence of a conditional jump. For VT_JMP,
1193it is 1 if the jump is taken, 0 otherwise. For VT_JMPI it is inverted.
1194
1195These values are used to compile the @code{||} and @code{&&} logical
1196operators.
1197
1198If any code is generated, this value MUST be put in a normal
1199register. Otherwise, the generated code won't be executed if the jump is
1200taken.
1201
1202@item VT_LVAL
1203is a flag indicating that the value is actually an lvalue (left value of
1204an assignment). It means that the value stored is actually a pointer to
1205the wanted value.
1206
1207Understanding the use @code{VT_LVAL} is very important if you want to
1208understand how TCC works.
1209
1210@item VT_LVAL_BYTE
1211@itemx VT_LVAL_SHORT
1212@itemx VT_LVAL_UNSIGNED
1213if the lvalue has an integer type, then these flags give its real
1214type. The type alone is not enough in case of cast optimisations.
1215
1216@item VT_LLOCAL
1217is a saved lvalue on the stack. @code{VT_LVAL} must also be set with
1218@code{VT_LLOCAL}. @code{VT_LLOCAL} can arise when a @code{VT_LVAL} in
1219a register has to be saved to the stack, or it can come from an
1220architecture-specific calling convention.
1221
1222@item VT_MUSTCAST
1223indicates that a cast to the value type must be performed if the value
1224is used (lazy casting).
1225
1226@item VT_SYM
1227indicates that the symbol @code{SValue.sym} must be added to the constant.
1228
1229@item VT_MUSTBOUND
1230@itemx VT_BOUNDED
1231are only used for optional bound checking.
1232
1233@end table
1234
1235@subsection Manipulating the value stack
1236@cindex value stack
1237
1238@code{vsetc()} and @code{vset()} pushes a new value on the value
1239stack. If the previous @var{vtop} was stored in a very unsafe place(for
1240example in the CPU flags), then some code is generated to put the
1241previous @var{vtop} in a safe storage.
1242
1243@code{vpop()} pops @var{vtop}. In some cases, it also generates cleanup
1244code (for example if stacked floating point registers are used as on
1245x86).
1246
1247The @code{gv(rc)} function generates code to evaluate @var{vtop} (the
1248top value of the stack) into registers. @var{rc} selects in which
1249register class the value should be put. @code{gv()} is the @emph{most
1250important function} of the code generator.
1251
1252@code{gv2()} is the same as @code{gv()} but for the top two stack
1253entries.
1254
1255@subsection CPU dependent code generation
1256@cindex CPU dependent
1257See the @file{i386-gen.c} file to have an example.
1258
1259@table @code
1260
1261@item load()
1262must generate the code needed to load a stack value into a register.
1263
1264@item store()
1265must generate the code needed to store a register into a stack value
1266lvalue.
1267
1268@item gfunc_start()
1269@itemx gfunc_param()
1270@itemx gfunc_call()
1271should generate a function call
1272
1273@item gfunc_prolog()
1274@itemx gfunc_epilog()
1275should generate a function prolog/epilog.
1276
1277@item gen_opi(op)
1278must generate the binary integer operation @var{op} on the two top
1279entries of the stack which are guaranteed to contain integer types.
1280
1281The result value should be put on the stack.
1282
1283@item gen_opf(op)
1284same as @code{gen_opi()} for floating point operations. The two top
1285entries of the stack are guaranteed to contain floating point values of
1286same types.
1287
1288@item gen_cvt_itof()
1289integer to floating point conversion.
1290
1291@item gen_cvt_ftoi()
1292floating point to integer conversion.
1293
1294@item gen_cvt_ftof()
1295floating point to floating point of different size conversion.
1296
1297@item gen_bounded_ptr_add()
1298@item gen_bounded_ptr_deref()
1299are only used for bounds checking.
1300
1301@end table
1302
1303@section Optimizations done
1304@cindex optimizations
1305@cindex constant propagation
1306@cindex strength reduction
1307@cindex comparison operators
1308@cindex caching processor flags
1309@cindex flags, caching
1310@cindex jump optimization
1311Constant propagation is done for all operations. Multiplications and
1312divisions are optimized to shifts when appropriate. Comparison
1313operators are optimized by maintaining a special cache for the
1314processor flags. &&, || and ! are optimized by maintaining a special
1315'jump target' value. No other jump optimization is currently performed
1316because it would require to store the code in a more abstract fashion.
1317
1318@unnumbered Concept Index
1319@printindex cp
1320
1321@bye
1322
1323@c Local variables:
1324@c fill-column: 78
1325@c texinfo-column-for-description: 32
1326@c End:
Note: See TracBrowser for help on using the repository browser.