source: EcnlProtoTool/trunk/openssl-1.1.0e/ssl/s3_cbc.c@ 331

Last change on this file since 331 was 331, checked in by coas-nagasima, 6 years ago

prototoolに関連するプロジェクトをnewlibからmuslを使うよう変更・更新
ntshellをnewlibの下位の実装から、muslのsyscallの実装に変更・更新
以下のOSSをアップデート
・mruby-1.3.0
・musl-1.1.18
・onigmo-6.1.3
・tcc-0.9.27
以下のOSSを追加
・openssl-1.1.0e
・curl-7.57.0
・zlib-1.2.11
以下のmrbgemsを追加
・iij/mruby-digest
・iij/mruby-env
・iij/mruby-errno
・iij/mruby-iijson
・iij/mruby-ipaddr
・iij/mruby-mock
・iij/mruby-require
・iij/mruby-tls-openssl

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/x-csrc
File size: 19.4 KB
Line 
1/*
2 * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include "internal/constant_time_locl.h"
11#include "ssl_locl.h"
12
13#include <openssl/md5.h>
14#include <openssl/sha.h>
15
16/*
17 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
18 * length field. (SHA-384/512 have 128-bit length.)
19 */
20#define MAX_HASH_BIT_COUNT_BYTES 16
21
22/*
23 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
24 * Currently SHA-384/512 has a 128-byte block size and that's the largest
25 * supported by TLS.)
26 */
27#define MAX_HASH_BLOCK_SIZE 128
28
29/*
30 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
31 * little-endian order. The value of p is advanced by four.
32 */
33#define u32toLE(n, p) \
34 (*((p)++)=(unsigned char)(n), \
35 *((p)++)=(unsigned char)(n>>8), \
36 *((p)++)=(unsigned char)(n>>16), \
37 *((p)++)=(unsigned char)(n>>24))
38
39/*
40 * These functions serialize the state of a hash and thus perform the
41 * standard "final" operation without adding the padding and length that such
42 * a function typically does.
43 */
44static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
45{
46 MD5_CTX *md5 = ctx;
47 u32toLE(md5->A, md_out);
48 u32toLE(md5->B, md_out);
49 u32toLE(md5->C, md_out);
50 u32toLE(md5->D, md_out);
51}
52
53static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
54{
55 SHA_CTX *sha1 = ctx;
56 l2n(sha1->h0, md_out);
57 l2n(sha1->h1, md_out);
58 l2n(sha1->h2, md_out);
59 l2n(sha1->h3, md_out);
60 l2n(sha1->h4, md_out);
61}
62
63static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
64{
65 SHA256_CTX *sha256 = ctx;
66 unsigned i;
67
68 for (i = 0; i < 8; i++) {
69 l2n(sha256->h[i], md_out);
70 }
71}
72
73static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
74{
75 SHA512_CTX *sha512 = ctx;
76 unsigned i;
77
78 for (i = 0; i < 8; i++) {
79 l2n8(sha512->h[i], md_out);
80 }
81}
82
83#undef LARGEST_DIGEST_CTX
84#define LARGEST_DIGEST_CTX SHA512_CTX
85
86/*
87 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
88 * which ssl3_cbc_digest_record supports.
89 */
90char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
91{
92 if (FIPS_mode())
93 return 0;
94 switch (EVP_MD_CTX_type(ctx)) {
95 case NID_md5:
96 case NID_sha1:
97 case NID_sha224:
98 case NID_sha256:
99 case NID_sha384:
100 case NID_sha512:
101 return 1;
102 default:
103 return 0;
104 }
105}
106
107/*-
108 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
109 * record.
110 *
111 * ctx: the EVP_MD_CTX from which we take the hash function.
112 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
113 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
114 * md_out_size: if non-NULL, the number of output bytes is written here.
115 * header: the 13-byte, TLS record header.
116 * data: the record data itself, less any preceding explicit IV.
117 * data_plus_mac_size: the secret, reported length of the data and MAC
118 * once the padding has been removed.
119 * data_plus_mac_plus_padding_size: the public length of the whole
120 * record, including padding.
121 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
122 *
123 * On entry: by virtue of having been through one of the remove_padding
124 * functions, above, we know that data_plus_mac_size is large enough to contain
125 * a padding byte and MAC. (If the padding was invalid, it might contain the
126 * padding too. )
127 * Returns 1 on success or 0 on error
128 */
129int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
130 unsigned char *md_out,
131 size_t *md_out_size,
132 const unsigned char header[13],
133 const unsigned char *data,
134 size_t data_plus_mac_size,
135 size_t data_plus_mac_plus_padding_size,
136 const unsigned char *mac_secret,
137 unsigned mac_secret_length, char is_sslv3)
138{
139 union {
140 double align;
141 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
142 } md_state;
143 void (*md_final_raw) (void *ctx, unsigned char *md_out);
144 void (*md_transform) (void *ctx, const unsigned char *block);
145 unsigned md_size, md_block_size = 64;
146 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
147 len, max_mac_bytes, num_blocks,
148 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
149 unsigned int bits; /* at most 18 bits */
150 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
151 /* hmac_pad is the masked HMAC key. */
152 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
153 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
154 unsigned char mac_out[EVP_MAX_MD_SIZE];
155 unsigned i, j, md_out_size_u;
156 EVP_MD_CTX *md_ctx = NULL;
157 /*
158 * mdLengthSize is the number of bytes in the length field that
159 * terminates * the hash.
160 */
161 unsigned md_length_size = 8;
162 char length_is_big_endian = 1;
163 int ret;
164
165 /*
166 * This is a, hopefully redundant, check that allows us to forget about
167 * many possible overflows later in this function.
168 */
169 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
170
171 switch (EVP_MD_CTX_type(ctx)) {
172 case NID_md5:
173 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
174 return 0;
175 md_final_raw = tls1_md5_final_raw;
176 md_transform =
177 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
178 md_size = 16;
179 sslv3_pad_length = 48;
180 length_is_big_endian = 0;
181 break;
182 case NID_sha1:
183 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
184 return 0;
185 md_final_raw = tls1_sha1_final_raw;
186 md_transform =
187 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
188 md_size = 20;
189 break;
190 case NID_sha224:
191 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
192 return 0;
193 md_final_raw = tls1_sha256_final_raw;
194 md_transform =
195 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
196 md_size = 224 / 8;
197 break;
198 case NID_sha256:
199 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
200 return 0;
201 md_final_raw = tls1_sha256_final_raw;
202 md_transform =
203 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
204 md_size = 32;
205 break;
206 case NID_sha384:
207 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
208 return 0;
209 md_final_raw = tls1_sha512_final_raw;
210 md_transform =
211 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
212 md_size = 384 / 8;
213 md_block_size = 128;
214 md_length_size = 16;
215 break;
216 case NID_sha512:
217 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
218 return 0;
219 md_final_raw = tls1_sha512_final_raw;
220 md_transform =
221 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
222 md_size = 64;
223 md_block_size = 128;
224 md_length_size = 16;
225 break;
226 default:
227 /*
228 * ssl3_cbc_record_digest_supported should have been called first to
229 * check that the hash function is supported.
230 */
231 OPENSSL_assert(0);
232 if (md_out_size)
233 *md_out_size = 0;
234 return 0;
235 }
236
237 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
238 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
239 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
240
241 header_length = 13;
242 if (is_sslv3) {
243 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
244 * number */ +
245 1 /* record type */ +
246 2 /* record length */ ;
247 }
248
249 /*
250 * variance_blocks is the number of blocks of the hash that we have to
251 * calculate in constant time because they could be altered by the
252 * padding value. In SSLv3, the padding must be minimal so the end of
253 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
254 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
255 * of hash termination (0x80 + 64-bit length) don't fit in the final
256 * block, we say that the final two blocks can vary based on the padding.
257 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
258 * required to be minimal. Therefore we say that the final six blocks can
259 * vary based on the padding. Later in the function, if the message is
260 * short and there obviously cannot be this many blocks then
261 * variance_blocks can be reduced.
262 */
263 variance_blocks = is_sslv3 ? 2 : 6;
264 /*
265 * From now on we're dealing with the MAC, which conceptually has 13
266 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
267 * (SSLv3)
268 */
269 len = data_plus_mac_plus_padding_size + header_length;
270 /*
271 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
272 * including * |header|, assuming that there's no padding.
273 */
274 max_mac_bytes = len - md_size - 1;
275 /* num_blocks is the maximum number of hash blocks. */
276 num_blocks =
277 (max_mac_bytes + 1 + md_length_size + md_block_size -
278 1) / md_block_size;
279 /*
280 * In order to calculate the MAC in constant time we have to handle the
281 * final blocks specially because the padding value could cause the end
282 * to appear somewhere in the final |variance_blocks| blocks and we can't
283 * leak where. However, |num_starting_blocks| worth of data can be hashed
284 * right away because no padding value can affect whether they are
285 * plaintext.
286 */
287 num_starting_blocks = 0;
288 /*
289 * k is the starting byte offset into the conceptual header||data where
290 * we start processing.
291 */
292 k = 0;
293 /*
294 * mac_end_offset is the index just past the end of the data to be MACed.
295 */
296 mac_end_offset = data_plus_mac_size + header_length - md_size;
297 /*
298 * c is the index of the 0x80 byte in the final hash block that contains
299 * application data.
300 */
301 c = mac_end_offset % md_block_size;
302 /*
303 * index_a is the hash block number that contains the 0x80 terminating
304 * value.
305 */
306 index_a = mac_end_offset / md_block_size;
307 /*
308 * index_b is the hash block number that contains the 64-bit hash length,
309 * in bits.
310 */
311 index_b = (mac_end_offset + md_length_size) / md_block_size;
312 /*
313 * bits is the hash-length in bits. It includes the additional hash block
314 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
315 */
316
317 /*
318 * For SSLv3, if we're going to have any starting blocks then we need at
319 * least two because the header is larger than a single block.
320 */
321 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
322 num_starting_blocks = num_blocks - variance_blocks;
323 k = md_block_size * num_starting_blocks;
324 }
325
326 bits = 8 * mac_end_offset;
327 if (!is_sslv3) {
328 /*
329 * Compute the initial HMAC block. For SSLv3, the padding and secret
330 * bytes are included in |header| because they take more than a
331 * single block.
332 */
333 bits += 8 * md_block_size;
334 memset(hmac_pad, 0, md_block_size);
335 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
336 memcpy(hmac_pad, mac_secret, mac_secret_length);
337 for (i = 0; i < md_block_size; i++)
338 hmac_pad[i] ^= 0x36;
339
340 md_transform(md_state.c, hmac_pad);
341 }
342
343 if (length_is_big_endian) {
344 memset(length_bytes, 0, md_length_size - 4);
345 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
346 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
347 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
348 length_bytes[md_length_size - 1] = (unsigned char)bits;
349 } else {
350 memset(length_bytes, 0, md_length_size);
351 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
352 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
353 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
354 length_bytes[md_length_size - 8] = (unsigned char)bits;
355 }
356
357 if (k > 0) {
358 if (is_sslv3) {
359 unsigned overhang;
360
361 /*
362 * The SSLv3 header is larger than a single block. overhang is
363 * the number of bytes beyond a single block that the header
364 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
365 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
366 * therefore we can be confident that the header_length will be
367 * greater than |md_block_size|. However we add a sanity check just
368 * in case
369 */
370 if (header_length <= md_block_size) {
371 /* Should never happen */
372 return 0;
373 }
374 overhang = header_length - md_block_size;
375 md_transform(md_state.c, header);
376 memcpy(first_block, header + md_block_size, overhang);
377 memcpy(first_block + overhang, data, md_block_size - overhang);
378 md_transform(md_state.c, first_block);
379 for (i = 1; i < k / md_block_size - 1; i++)
380 md_transform(md_state.c, data + md_block_size * i - overhang);
381 } else {
382 /* k is a multiple of md_block_size. */
383 memcpy(first_block, header, 13);
384 memcpy(first_block + 13, data, md_block_size - 13);
385 md_transform(md_state.c, first_block);
386 for (i = 1; i < k / md_block_size; i++)
387 md_transform(md_state.c, data + md_block_size * i - 13);
388 }
389 }
390
391 memset(mac_out, 0, sizeof(mac_out));
392
393 /*
394 * We now process the final hash blocks. For each block, we construct it
395 * in constant time. If the |i==index_a| then we'll include the 0x80
396 * bytes and zero pad etc. For each block we selectively copy it, in
397 * constant time, to |mac_out|.
398 */
399 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
400 i++) {
401 unsigned char block[MAX_HASH_BLOCK_SIZE];
402 unsigned char is_block_a = constant_time_eq_8(i, index_a);
403 unsigned char is_block_b = constant_time_eq_8(i, index_b);
404 for (j = 0; j < md_block_size; j++) {
405 unsigned char b = 0, is_past_c, is_past_cp1;
406 if (k < header_length)
407 b = header[k];
408 else if (k < data_plus_mac_plus_padding_size + header_length)
409 b = data[k - header_length];
410 k++;
411
412 is_past_c = is_block_a & constant_time_ge_8(j, c);
413 is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
414 /*
415 * If this is the block containing the end of the application
416 * data, and we are at the offset for the 0x80 value, then
417 * overwrite b with 0x80.
418 */
419 b = constant_time_select_8(is_past_c, 0x80, b);
420 /*
421 * If this the the block containing the end of the application
422 * data and we're past the 0x80 value then just write zero.
423 */
424 b = b & ~is_past_cp1;
425 /*
426 * If this is index_b (the final block), but not index_a (the end
427 * of the data), then the 64-bit length didn't fit into index_a
428 * and we're having to add an extra block of zeros.
429 */
430 b &= ~is_block_b | is_block_a;
431
432 /*
433 * The final bytes of one of the blocks contains the length.
434 */
435 if (j >= md_block_size - md_length_size) {
436 /* If this is index_b, write a length byte. */
437 b = constant_time_select_8(is_block_b,
438 length_bytes[j -
439 (md_block_size -
440 md_length_size)], b);
441 }
442 block[j] = b;
443 }
444
445 md_transform(md_state.c, block);
446 md_final_raw(md_state.c, block);
447 /* If this is index_b, copy the hash value to |mac_out|. */
448 for (j = 0; j < md_size; j++)
449 mac_out[j] |= block[j] & is_block_b;
450 }
451
452 md_ctx = EVP_MD_CTX_new();
453 if (md_ctx == NULL)
454 goto err;
455 if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
456 goto err;
457 if (is_sslv3) {
458 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
459 memset(hmac_pad, 0x5c, sslv3_pad_length);
460
461 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
462 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
463 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
464 goto err;
465 } else {
466 /* Complete the HMAC in the standard manner. */
467 for (i = 0; i < md_block_size; i++)
468 hmac_pad[i] ^= 0x6a;
469
470 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
471 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
472 goto err;
473 }
474 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
475 if (ret && md_out_size)
476 *md_out_size = md_out_size_u;
477 EVP_MD_CTX_free(md_ctx);
478
479 return 1;
480 err:
481 EVP_MD_CTX_free(md_ctx);
482 return 0;
483}
484
485/*
486 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
487 * we can ensure the number of blocks processed is equal for all cases by
488 * digesting additional data.
489 */
490
491int tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
492 EVP_MD_CTX *mac_ctx, const unsigned char *data,
493 size_t data_len, size_t orig_len)
494{
495 size_t block_size, digest_pad, blocks_data, blocks_orig;
496 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
497 return 1;
498 block_size = EVP_MD_CTX_block_size(mac_ctx);
499 /*-
500 * We are in FIPS mode if we get this far so we know we have only SHA*
501 * digests and TLS to deal with.
502 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
503 * otherwise.
504 * Additional header is 13 bytes. To get the number of digest blocks
505 * processed round up the amount of data plus padding to the nearest
506 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
507 * So we have:
508 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
509 * equivalently:
510 * blocks = (payload_len + digest_pad + 12)/block_size + 1
511 * HMAC adds a constant overhead.
512 * We're ultimately only interested in differences so this becomes
513 * blocks = (payload_len + 29)/128
514 * for SHA384/SHA512 and
515 * blocks = (payload_len + 21)/64
516 * otherwise.
517 */
518 digest_pad = block_size == 64 ? 21 : 29;
519 blocks_orig = (orig_len + digest_pad) / block_size;
520 blocks_data = (data_len + digest_pad) / block_size;
521 /*
522 * MAC enough blocks to make up the difference between the original and
523 * actual lengths plus one extra block to ensure this is never a no op.
524 * The "data" pointer should always have enough space to perform this
525 * operation as it is large enough for a maximum length TLS buffer.
526 */
527 return EVP_DigestSignUpdate(mac_ctx, data,
528 (blocks_orig - blocks_data + 1) * block_size);
529}
Note: See TracBrowser for help on using the repository browser.