/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #ifdef OPENSSL_SYS_VMS # if __CRTL_VER >= 70000000 && \ (defined _POSIX_C_SOURCE || !defined _ANSI_C_SOURCE) # define VMS_GMTIME_OK # endif # ifndef VMS_GMTIME_OK # include # include # include # include # include # include # endif /* ndef VMS_GMTIME_OK */ /* * Needed to pick up the correct definitions and declarations in some of the * DEC C Header Files (*.H). */ # define __NEW_STARLET 1 # if (defined(__alpha) || defined(__ia64)) # include # else /* VAX */ typedef struct _ile3 { /* Copied from ILEDEF.H for Alpha */ # pragma __nomember_alignment unsigned short int ile3$w_length; /* Length of buffer in bytes */ unsigned short int ile3$w_code; /* Item code value */ void *ile3$ps_bufaddr; /* Buffer address */ unsigned short int *ile3$ps_retlen_addr; /* Address of word for returned length */ } ILE3; # endif /* alpha || ia64 */ #endif /* OPENSSL_SYS_VMS */ struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result) { struct tm *ts = NULL; #if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && (!defined(OPENSSL_SYS_VMS) || defined(gmtime_r)) && !defined(OPENSSL_SYS_MACOSX) if (gmtime_r(timer, result) == NULL) return NULL; ts = result; #elif !defined(OPENSSL_SYS_VMS) || defined(VMS_GMTIME_OK) ts = gmtime(timer); if (ts == NULL) return NULL; memcpy(result, ts, sizeof(struct tm)); ts = result; #endif #if defined( OPENSSL_SYS_VMS) && !defined( VMS_GMTIME_OK) if (ts == NULL) { static $DESCRIPTOR(tabnam, "LNM$DCL_LOGICAL"); static $DESCRIPTOR(lognam, "SYS$TIMEZONE_DIFFERENTIAL"); char logvalue[256]; unsigned int reslen = 0; # if __INITIAL_POINTER_SIZE == 64 ILEB_64 itemlist[2], *pitem; # else ILE3 itemlist[2], *pitem; # endif int status; time_t t; /* * Setup an itemlist for the call to $TRNLNM - Translate Logical Name. */ pitem = itemlist; # if __INITIAL_POINTER_SIZE == 64 pitem->ileb_64$w_mbo = 1; pitem->ileb_64$w_code = LNM$_STRING; pitem->ileb_64$l_mbmo = -1; pitem->ileb_64$q_length = sizeof (logvalue); pitem->ileb_64$pq_bufaddr = logvalue; pitem->ileb_64$pq_retlen_addr = (unsigned __int64 *) &reslen; pitem++; /* Last item of the item list is null terminated */ pitem->ileb_64$q_length = pitem->ileb_64$w_code = 0; # else pitem->ile3$w_length = sizeof (logvalue); pitem->ile3$w_code = LNM$_STRING; pitem->ile3$ps_bufaddr = logvalue; pitem->ile3$ps_retlen_addr = (unsigned short int *) &reslen; pitem++; /* Last item of the item list is null terminated */ pitem->ile3$w_length = pitem->ile3$w_code = 0; # endif /* Get the value for SYS$TIMEZONE_DIFFERENTIAL */ status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist); if (!(status & 1)) return NULL; logvalue[reslen] = '\0'; t = *timer; /* The following is extracted from the DEC C header time.h */ /* ** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime ** have two implementations. One implementation is provided ** for compatibility and deals with time in terms of local time, ** the other __utc_* deals with time in terms of UTC. */ /* * We use the same conditions as in said time.h to check if we should * assume that t contains local time (and should therefore be * adjusted) or UTC (and should therefore be left untouched). */ # if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE /* Get the numerical value of the equivalence string */ status = atoi(logvalue); /* and use it to move time to GMT */ t -= status; # endif /* then convert the result to the time structure */ /* * Since there was no gmtime_r() to do this stuff for us, we have to * do it the hard way. */ { /*- * The VMS epoch is the astronomical Smithsonian date, if I remember correctly, which is November 17, 1858. Furthermore, time is measure in tenths of microseconds and stored in quadwords (64 bit integers). unix_epoch below is January 1st 1970 expressed as a VMS time. The following code was used to get this number: #include #include #include #include main() { unsigned long systime[2]; unsigned short epoch_values[7] = { 1970, 1, 1, 0, 0, 0, 0 }; lib$cvt_vectim(epoch_values, systime); printf("%u %u", systime[0], systime[1]); } */ unsigned long unix_epoch[2] = { 1273708544, 8164711 }; unsigned long deltatime[2]; unsigned long systime[2]; struct vms_vectime { short year, month, day, hour, minute, second, centi_second; } time_values; long operation; /* * Turn the number of seconds since January 1st 1970 to an * internal delta time. Note that lib$cvt_to_internal_time() will * assume that t is signed, and will therefore break on 32-bit * systems some time in 2038. */ operation = LIB$K_DELTA_SECONDS; status = lib$cvt_to_internal_time(&operation, &t, deltatime); /* * Add the delta time with the Unix epoch and we have the current * UTC time in internal format */ status = lib$add_times(unix_epoch, deltatime, systime); /* Turn the internal time into a time vector */ status = sys$numtim(&time_values, systime); /* Fill in the struct tm with the result */ result->tm_sec = time_values.second; result->tm_min = time_values.minute; result->tm_hour = time_values.hour; result->tm_mday = time_values.day; result->tm_mon = time_values.month - 1; result->tm_year = time_values.year - 1900; operation = LIB$K_DAY_OF_WEEK; status = lib$cvt_from_internal_time(&operation, &result->tm_wday, systime); result->tm_wday %= 7; operation = LIB$K_DAY_OF_YEAR; status = lib$cvt_from_internal_time(&operation, &result->tm_yday, systime); result->tm_yday--; result->tm_isdst = 0; /* There's no way to know... */ ts = result; } } #endif return ts; } /* * Take a tm structure and add an offset to it. This avoids any OS issues * with restricted date types and overflows which cause the year 2038 * problem. */ #define SECS_PER_DAY (24 * 60 * 60) static long date_to_julian(int y, int m, int d); static void julian_to_date(long jd, int *y, int *m, int *d); static int julian_adj(const struct tm *tm, int off_day, long offset_sec, long *pday, int *psec); int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec) { int time_sec, time_year, time_month, time_day; long time_jd; /* Convert time and offset into Julian day and seconds */ if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec)) return 0; /* Convert Julian day back to date */ julian_to_date(time_jd, &time_year, &time_month, &time_day); if (time_year < 1900 || time_year > 9999) return 0; /* Update tm structure */ tm->tm_year = time_year - 1900; tm->tm_mon = time_month - 1; tm->tm_mday = time_day; tm->tm_hour = time_sec / 3600; tm->tm_min = (time_sec / 60) % 60; tm->tm_sec = time_sec % 60; return 1; } int OPENSSL_gmtime_diff(int *pday, int *psec, const struct tm *from, const struct tm *to) { int from_sec, to_sec, diff_sec; long from_jd, to_jd, diff_day; if (!julian_adj(from, 0, 0, &from_jd, &from_sec)) return 0; if (!julian_adj(to, 0, 0, &to_jd, &to_sec)) return 0; diff_day = to_jd - from_jd; diff_sec = to_sec - from_sec; /* Adjust differences so both positive or both negative */ if (diff_day > 0 && diff_sec < 0) { diff_day--; diff_sec += SECS_PER_DAY; } if (diff_day < 0 && diff_sec > 0) { diff_day++; diff_sec -= SECS_PER_DAY; } if (pday) *pday = (int)diff_day; if (psec) *psec = diff_sec; return 1; } /* Convert tm structure and offset into julian day and seconds */ static int julian_adj(const struct tm *tm, int off_day, long offset_sec, long *pday, int *psec) { int offset_hms, offset_day; long time_jd; int time_year, time_month, time_day; /* split offset into days and day seconds */ offset_day = offset_sec / SECS_PER_DAY; /* Avoid sign issues with % operator */ offset_hms = offset_sec - (offset_day * SECS_PER_DAY); offset_day += off_day; /* Add current time seconds to offset */ offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec; /* Adjust day seconds if overflow */ if (offset_hms >= SECS_PER_DAY) { offset_day++; offset_hms -= SECS_PER_DAY; } else if (offset_hms < 0) { offset_day--; offset_hms += SECS_PER_DAY; } /* * Convert date of time structure into a Julian day number. */ time_year = tm->tm_year + 1900; time_month = tm->tm_mon + 1; time_day = tm->tm_mday; time_jd = date_to_julian(time_year, time_month, time_day); /* Work out Julian day of new date */ time_jd += offset_day; if (time_jd < 0) return 0; *pday = time_jd; *psec = offset_hms; return 1; } /* * Convert date to and from julian day Uses Fliegel & Van Flandern algorithm */ static long date_to_julian(int y, int m, int d) { return (1461 * (y + 4800 + (m - 14) / 12)) / 4 + (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 - (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075; } static void julian_to_date(long jd, int *y, int *m, int *d) { long L = jd + 68569; long n = (4 * L) / 146097; long i, j; L = L - (146097 * n + 3) / 4; i = (4000 * (L + 1)) / 1461001; L = L - (1461 * i) / 4 + 31; j = (80 * L) / 2447; *d = L - (2447 * j) / 80; L = j / 11; *m = j + 2 - (12 * L); *y = 100 * (n - 49) + i + L; }