/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_lcl.h" #include /* * NOTE: the IV/counter CTR mode is big-endian. The code itself is * endian-neutral. */ /* increment counter (128-bit int) by 1 */ static void ctr128_inc(unsigned char *counter) { u32 n = 16, c = 1; do { --n; c += counter[n]; counter[n] = (u8)c; c >>= 8; } while (n); } #if !defined(OPENSSL_SMALL_FOOTPRINT) static void ctr128_inc_aligned(unsigned char *counter) { size_t *data, c, d, n; const union { long one; char little; } is_endian = { 1 }; if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) { ctr128_inc(counter); return; } data = (size_t *)counter; c = 1; n = 16 / sizeof(size_t); do { --n; d = data[n] += c; /* did addition carry? */ c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1); } while (n); } #endif /* * The input encrypted as though 128bit counter mode is being used. The * extra state information to record how much of the 128bit block we have * used is contained in *num, and the encrypted counter is kept in * ecount_buf. Both *num and ecount_buf must be initialised with zeros * before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes * that the counter is in the x lower bits of the IV (ivec), and that the * application has full control over overflow and the rest of the IV. This * implementation takes NO responsibility for checking that the counter * doesn't overflow into the rest of the IV when incremented. */ void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], unsigned char ecount_buf[16], unsigned int *num, block128_f block) { unsigned int n; size_t l = 0; n = *num; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = *(in++) ^ ecount_buf[n]; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ecount_buf) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ecount_buf, key); ctr128_inc_aligned(ivec); for (n = 0; n < 16; n += sizeof(size_t)) *(size_t *)(out + n) = *(size_t *)(in + n) ^ *(size_t *)(ecount_buf + n); len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ecount_buf, key); ctr128_inc_aligned(ivec); while (len--) { out[n] = in[n] ^ ecount_buf[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ecount_buf, key); ctr128_inc(ivec); } out[l] = in[l] ^ ecount_buf[n]; ++l; n = (n + 1) % 16; } *num = n; } /* increment upper 96 bits of 128-bit counter by 1 */ static void ctr96_inc(unsigned char *counter) { u32 n = 12, c = 1; do { --n; c += counter[n]; counter[n] = (u8)c; c >>= 8; } while (n); } void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], unsigned char ecount_buf[16], unsigned int *num, ctr128_f func) { unsigned int n, ctr32; n = *num; while (n && len) { *(out++) = *(in++) ^ ecount_buf[n]; --len; n = (n + 1) % 16; } ctr32 = GETU32(ivec + 12); while (len >= 16) { size_t blocks = len / 16; /* * 1<<28 is just a not-so-small yet not-so-large number... * Below condition is practically never met, but it has to * be checked for code correctness. */ if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28)) blocks = (1U << 28); /* * As (*func) operates on 32-bit counter, caller * has to handle overflow. 'if' below detects the * overflow, which is then handled by limiting the * amount of blocks to the exact overflow point... */ ctr32 += (u32)blocks; if (ctr32 < blocks) { blocks -= ctr32; ctr32 = 0; } (*func) (in, out, blocks, key, ivec); /* (*ctr) does not update ivec, caller does: */ PUTU32(ivec + 12, ctr32); /* ... overflow was detected, propagate carry. */ if (ctr32 == 0) ctr96_inc(ivec); blocks *= 16; len -= blocks; out += blocks; in += blocks; } if (len) { memset(ecount_buf, 0, 16); (*func) (ecount_buf, ecount_buf, 1, key, ivec); ++ctr32; PUTU32(ivec + 12, ctr32); if (ctr32 == 0) ctr96_inc(ivec); while (len--) { out[n] = in[n] ^ ecount_buf[n]; ++n; } } *num = n; }