/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "internal/bio.h" static int b64_write(BIO *h, const char *buf, int num); static int b64_read(BIO *h, char *buf, int size); static int b64_puts(BIO *h, const char *str); /* * static int b64_gets(BIO *h, char *str, int size); */ static long b64_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int b64_new(BIO *h); static int b64_free(BIO *data); static long b64_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp); #define B64_BLOCK_SIZE 1024 #define B64_BLOCK_SIZE2 768 #define B64_NONE 0 #define B64_ENCODE 1 #define B64_DECODE 2 typedef struct b64_struct { /* * BIO *bio; moved to the BIO structure */ int buf_len; int buf_off; int tmp_len; /* used to find the start when decoding */ int tmp_nl; /* If true, scan until '\n' */ int encode; int start; /* have we started decoding yet? */ int cont; /* <= 0 when finished */ EVP_ENCODE_CTX *base64; char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10]; char tmp[B64_BLOCK_SIZE]; } BIO_B64_CTX; static const BIO_METHOD methods_b64 = { BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, b64_puts, NULL, /* b64_gets, */ b64_ctrl, b64_new, b64_free, b64_callback_ctrl, }; const BIO_METHOD *BIO_f_base64(void) { return &methods_b64; } static int b64_new(BIO *bi) { BIO_B64_CTX *ctx; ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return 0; ctx->cont = 1; ctx->start = 1; ctx->base64 = EVP_ENCODE_CTX_new(); if (ctx->base64 == NULL) { OPENSSL_free(ctx); return 0; } BIO_set_data(bi, ctx); BIO_set_init(bi, 1); return 1; } static int b64_free(BIO *a) { BIO_B64_CTX *ctx; if (a == NULL) return 0; ctx = BIO_get_data(a); if (ctx == NULL) return 0; EVP_ENCODE_CTX_free(ctx->base64); OPENSSL_free(ctx); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int b64_read(BIO *b, char *out, int outl) { int ret = 0, i, ii, j, k, x, n, num, ret_code = 0; BIO_B64_CTX *ctx; unsigned char *p, *q; BIO *next; if (out == NULL) return (0); ctx = (BIO_B64_CTX *)BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; BIO_clear_retry_flags(b); if (ctx->encode != B64_DECODE) { ctx->encode = B64_DECODE; ctx->buf_len = 0; ctx->buf_off = 0; ctx->tmp_len = 0; EVP_DecodeInit(ctx->base64); } /* First check if there are bytes decoded/encoded */ if (ctx->buf_len > 0) { OPENSSL_assert(ctx->buf_len >= ctx->buf_off); i = ctx->buf_len - ctx->buf_off; if (i > outl) i = outl; OPENSSL_assert(ctx->buf_off + i < (int)sizeof(ctx->buf)); memcpy(out, &(ctx->buf[ctx->buf_off]), i); ret = i; out += i; outl -= i; ctx->buf_off += i; if (ctx->buf_len == ctx->buf_off) { ctx->buf_len = 0; ctx->buf_off = 0; } } /* * At this point, we have room of outl bytes and an empty buffer, so we * should read in some more. */ ret_code = 0; while (outl > 0) { if (ctx->cont <= 0) break; i = BIO_read(next, &(ctx->tmp[ctx->tmp_len]), B64_BLOCK_SIZE - ctx->tmp_len); if (i <= 0) { ret_code = i; /* Should we continue next time we are called? */ if (!BIO_should_retry(next)) { ctx->cont = i; /* If buffer empty break */ if (ctx->tmp_len == 0) break; /* Fall through and process what we have */ else i = 0; } /* else we retry and add more data to buffer */ else break; } i += ctx->tmp_len; ctx->tmp_len = i; /* * We need to scan, a line at a time until we have a valid line if we * are starting. */ if (ctx->start && (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)) { /* ctx->start=1; */ ctx->tmp_len = 0; } else if (ctx->start) { q = p = (unsigned char *)ctx->tmp; num = 0; for (j = 0; j < i; j++) { if (*(q++) != '\n') continue; /* * due to a previous very long line, we need to keep on * scanning for a '\n' before we even start looking for * base64 encoded stuff. */ if (ctx->tmp_nl) { p = q; ctx->tmp_nl = 0; continue; } k = EVP_DecodeUpdate(ctx->base64, (unsigned char *)ctx->buf, &num, p, q - p); if ((k <= 0) && (num == 0) && (ctx->start)) EVP_DecodeInit(ctx->base64); else { if (p != (unsigned char *) &(ctx->tmp[0])) { i -= (p - (unsigned char *) &(ctx->tmp[0])); for (x = 0; x < i; x++) ctx->tmp[x] = p[x]; } EVP_DecodeInit(ctx->base64); ctx->start = 0; break; } p = q; } /* we fell off the end without starting */ if ((j == i) && (num == 0)) { /* * Is this is one long chunk?, if so, keep on reading until a * new line. */ if (p == (unsigned char *)&(ctx->tmp[0])) { /* Check buffer full */ if (i == B64_BLOCK_SIZE) { ctx->tmp_nl = 1; ctx->tmp_len = 0; } } else if (p != q) { /* finished on a '\n' */ n = q - p; for (ii = 0; ii < n; ii++) ctx->tmp[ii] = p[ii]; ctx->tmp_len = n; } /* else finished on a '\n' */ continue; } else { ctx->tmp_len = 0; } } else if ((i < B64_BLOCK_SIZE) && (ctx->cont > 0)) { /* * If buffer isn't full and we can retry then restart to read in * more data. */ continue; } if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { int z, jj; jj = i & ~3; /* process per 4 */ z = EVP_DecodeBlock((unsigned char *)ctx->buf, (unsigned char *)ctx->tmp, jj); if (jj > 2) { if (ctx->tmp[jj - 1] == '=') { z--; if (ctx->tmp[jj - 2] == '=') z--; } } /* * z is now number of output bytes and jj is the number consumed */ if (jj != i) { memmove(ctx->tmp, &ctx->tmp[jj], i - jj); ctx->tmp_len = i - jj; } ctx->buf_len = 0; if (z > 0) { ctx->buf_len = z; } i = z; } else { i = EVP_DecodeUpdate(ctx->base64, (unsigned char *)ctx->buf, &ctx->buf_len, (unsigned char *)ctx->tmp, i); ctx->tmp_len = 0; } ctx->buf_off = 0; if (i < 0) { ret_code = 0; ctx->buf_len = 0; break; } if (ctx->buf_len <= outl) i = ctx->buf_len; else i = outl; memcpy(out, ctx->buf, i); ret += i; ctx->buf_off = i; if (ctx->buf_off == ctx->buf_len) { ctx->buf_len = 0; ctx->buf_off = 0; } outl -= i; out += i; } /* BIO_clear_retry_flags(b); */ BIO_copy_next_retry(b); return ((ret == 0) ? ret_code : ret); } static int b64_write(BIO *b, const char *in, int inl) { int ret = 0; int n; int i; BIO_B64_CTX *ctx; BIO *next; ctx = (BIO_B64_CTX *)BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; BIO_clear_retry_flags(b); if (ctx->encode != B64_ENCODE) { ctx->encode = B64_ENCODE; ctx->buf_len = 0; ctx->buf_off = 0; ctx->tmp_len = 0; EVP_EncodeInit(ctx->base64); } OPENSSL_assert(ctx->buf_off < (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); n = ctx->buf_len - ctx->buf_off; while (n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); return (i); } OPENSSL_assert(i <= n); ctx->buf_off += i; OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); n -= i; } /* at this point all pending data has been written */ ctx->buf_off = 0; ctx->buf_len = 0; if ((in == NULL) || (inl <= 0)) return (0); while (inl > 0) { n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl; if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { if (ctx->tmp_len > 0) { OPENSSL_assert(ctx->tmp_len <= 3); n = 3 - ctx->tmp_len; /* * There's a theoretical possibility for this */ if (n > inl) n = inl; memcpy(&(ctx->tmp[ctx->tmp_len]), in, n); ctx->tmp_len += n; ret += n; if (ctx->tmp_len < 3) break; ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, (unsigned char *)ctx->tmp, ctx->tmp_len); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); /* * Since we're now done using the temporary buffer, the * length should be 0'd */ ctx->tmp_len = 0; } else { if (n < 3) { memcpy(ctx->tmp, in, n); ctx->tmp_len = n; ret += n; break; } n -= n % 3; ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, (const unsigned char *)in, n); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret += n; } } else { if (!EVP_EncodeUpdate(ctx->base64, (unsigned char *)ctx->buf, &ctx->buf_len, (unsigned char *)in, n)) return ((ret == 0) ? -1 : ret); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret += n; } inl -= n; in += n; ctx->buf_off = 0; n = ctx->buf_len; while (n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); return ((ret == 0) ? i : ret); } OPENSSL_assert(i <= n); n -= i; ctx->buf_off += i; OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); } ctx->buf_len = 0; ctx->buf_off = 0; } return (ret); } static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO_B64_CTX *ctx; long ret = 1; int i; BIO *next; ctx = (BIO_B64_CTX *)BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; switch (cmd) { case BIO_CTRL_RESET: ctx->cont = 1; ctx->start = 1; ctx->encode = B64_NONE; ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_EOF: /* More to read */ if (ctx->cont <= 0) ret = 1; else ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_WPENDING: /* More to write in buffer */ OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret = ctx->buf_len - ctx->buf_off; if ((ret == 0) && (ctx->encode != B64_NONE) && (EVP_ENCODE_CTX_num(ctx->base64) != 0)) ret = 1; else if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_PENDING: /* More to read in buffer */ OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret = ctx->buf_len - ctx->buf_off; if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_FLUSH: /* do a final write */ again: while (ctx->buf_len != ctx->buf_off) { i = b64_write(b, NULL, 0); if (i < 0) return i; } if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { if (ctx->tmp_len != 0) { ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, (unsigned char *)ctx->tmp, ctx->tmp_len); ctx->buf_off = 0; ctx->tmp_len = 0; goto again; } } else if (ctx->encode != B64_NONE && EVP_ENCODE_CTX_num(ctx->base64) != 0) { ctx->buf_off = 0; EVP_EncodeFinal(ctx->base64, (unsigned char *)ctx->buf, &(ctx->buf_len)); /* push out the bytes */ goto again; } /* Finally flush the underlying BIO */ ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(next, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_DUP: break; case BIO_CTRL_INFO: case BIO_CTRL_GET: case BIO_CTRL_SET: default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp) { long ret = 1; BIO *next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(next, cmd, fp); break; } return (ret); } static int b64_puts(BIO *b, const char *str) { return b64_write(b, str, strlen(str)); }