source: EcnlProtoTool/trunk/openssl-1.1.0e/crypto/bn/bn_lcl.h@ 331

Last change on this file since 331 was 331, checked in by coas-nagasima, 6 years ago

prototoolに関連するプロジェクトをnewlibからmuslを使うよう変更・更新
ntshellをnewlibの下位の実装から、muslのsyscallの実装に変更・更新
以下のOSSをアップデート
・mruby-1.3.0
・musl-1.1.18
・onigmo-6.1.3
・tcc-0.9.27
以下のOSSを追加
・openssl-1.1.0e
・curl-7.57.0
・zlib-1.2.11
以下のmrbgemsを追加
・iij/mruby-digest
・iij/mruby-env
・iij/mruby-errno
・iij/mruby-iijson
・iij/mruby-ipaddr
・iij/mruby-mock
・iij/mruby-require
・iij/mruby-tls-openssl

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/x-chdr
File size: 24.8 KB
Line 
1/*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#ifndef HEADER_BN_LCL_H
11# define HEADER_BN_LCL_H
12
13/*
14 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16 * Configure script and needs to support both 32-bit and 64-bit.
17 */
18# include <openssl/opensslconf.h>
19
20# if !defined(OPENSSL_SYS_UEFI)
21# include "internal/bn_conf.h"
22# endif
23
24# include "internal/bn_int.h"
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30/*
31 * These preprocessor symbols control various aspects of the bignum headers
32 * and library code. They're not defined by any "normal" configuration, as
33 * they are intended for development and testing purposes. NB: defining all
34 * three can be useful for debugging application code as well as openssl
35 * itself. BN_DEBUG - turn on various debugging alterations to the bignum
36 * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up
37 * mismanagement of bignum internals. You must also define BN_DEBUG.
38 */
39/* #define BN_DEBUG */
40/* #define BN_DEBUG_RAND */
41
42# ifndef OPENSSL_SMALL_FOOTPRINT
43# define BN_MUL_COMBA
44# define BN_SQR_COMBA
45# define BN_RECURSION
46# endif
47
48/*
49 * This next option uses the C libraries (2 word)/(1 word) function. If it is
50 * not defined, I use my C version (which is slower). The reason for this
51 * flag is that when the particular C compiler library routine is used, and
52 * the library is linked with a different compiler, the library is missing.
53 * This mostly happens when the library is built with gcc and then linked
54 * using normal cc. This would be a common occurrence because gcc normally
55 * produces code that is 2 times faster than system compilers for the big
56 * number stuff. For machines with only one compiler (or shared libraries),
57 * this should be on. Again this in only really a problem on machines using
58 * "long long's", are 32bit, and are not using my assembler code.
59 */
60# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
61 defined(OPENSSL_SYS_WIN32) || defined(linux)
62# define BN_DIV2W
63# endif
64
65/*
66 * 64-bit processor with LP64 ABI
67 */
68# ifdef SIXTY_FOUR_BIT_LONG
69# define BN_ULLONG unsigned long long
70# define BN_BITS4 32
71# define BN_MASK2 (0xffffffffffffffffL)
72# define BN_MASK2l (0xffffffffL)
73# define BN_MASK2h (0xffffffff00000000L)
74# define BN_MASK2h1 (0xffffffff80000000L)
75# define BN_DEC_CONV (10000000000000000000UL)
76# define BN_DEC_NUM 19
77# define BN_DEC_FMT1 "%lu"
78# define BN_DEC_FMT2 "%019lu"
79# endif
80
81/*
82 * 64-bit processor other than LP64 ABI
83 */
84# ifdef SIXTY_FOUR_BIT
85# undef BN_LLONG
86# undef BN_ULLONG
87# define BN_BITS4 32
88# define BN_MASK2 (0xffffffffffffffffLL)
89# define BN_MASK2l (0xffffffffL)
90# define BN_MASK2h (0xffffffff00000000LL)
91# define BN_MASK2h1 (0xffffffff80000000LL)
92# define BN_DEC_CONV (10000000000000000000ULL)
93# define BN_DEC_NUM 19
94# define BN_DEC_FMT1 "%llu"
95# define BN_DEC_FMT2 "%019llu"
96# endif
97
98# ifdef THIRTY_TWO_BIT
99# ifdef BN_LLONG
100# if defined(_WIN32) && !defined(__GNUC__)
101# define BN_ULLONG unsigned __int64
102# else
103# define BN_ULLONG unsigned long long
104# endif
105# endif
106# define BN_BITS4 16
107# define BN_MASK2 (0xffffffffL)
108# define BN_MASK2l (0xffff)
109# define BN_MASK2h1 (0xffff8000L)
110# define BN_MASK2h (0xffff0000L)
111# define BN_DEC_CONV (1000000000L)
112# define BN_DEC_NUM 9
113# define BN_DEC_FMT1 "%u"
114# define BN_DEC_FMT2 "%09u"
115# endif
116
117
118/*-
119 * Bignum consistency macros
120 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
121 * bignum data after direct manipulations on the data. There is also an
122 * "internal" macro, bn_check_top(), for verifying that there are no leading
123 * zeroes. Unfortunately, some auditing is required due to the fact that
124 * bn_fix_top() has become an overabused duct-tape because bignum data is
125 * occasionally passed around in an inconsistent state. So the following
126 * changes have been made to sort this out;
127 * - bn_fix_top()s implementation has been moved to bn_correct_top()
128 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
129 * bn_check_top() is as before.
130 * - if BN_DEBUG *is* defined;
131 * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
132 * consistent. (ed: only if BN_DEBUG_RAND is defined)
133 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
134 * The idea is to have debug builds flag up inconsistent bignums when they
135 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
136 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
137 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
138 * was not appropriate, we convert it permanently to bn_check_top() and track
139 * down the cause of the bug. Eventually, no internal code should be using the
140 * bn_fix_top() macro. External applications and libraries should try this with
141 * their own code too, both in terms of building against the openssl headers
142 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
143 * defined. This not only improves external code, it provides more test
144 * coverage for openssl's own code.
145 */
146
147# ifdef BN_DEBUG
148
149# ifdef BN_DEBUG_RAND
150/* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */
151# ifndef RAND_bytes
152int RAND_bytes(unsigned char *buf, int num);
153# define BN_DEBUG_TRIX
154# endif
155# define bn_pollute(a) \
156 do { \
157 const BIGNUM *_bnum1 = (a); \
158 if (_bnum1->top < _bnum1->dmax) { \
159 unsigned char _tmp_char; \
160 /* We cast away const without the compiler knowing, any \
161 * *genuinely* constant variables that aren't mutable \
162 * wouldn't be constructed with top!=dmax. */ \
163 BN_ULONG *_not_const; \
164 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
165 RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
166 memset(_not_const + _bnum1->top, _tmp_char, \
167 sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
168 } \
169 } while(0)
170# ifdef BN_DEBUG_TRIX
171# undef RAND_bytes
172# endif
173# else
174# define bn_pollute(a)
175# endif
176# define bn_check_top(a) \
177 do { \
178 const BIGNUM *_bnum2 = (a); \
179 if (_bnum2 != NULL) { \
180 OPENSSL_assert(((_bnum2->top == 0) && !_bnum2->neg) || \
181 (_bnum2->top && (_bnum2->d[_bnum2->top - 1] != 0))); \
182 bn_pollute(_bnum2); \
183 } \
184 } while(0)
185
186# define bn_fix_top(a) bn_check_top(a)
187
188# define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
189# define bn_wcheck_size(bn, words) \
190 do { \
191 const BIGNUM *_bnum2 = (bn); \
192 OPENSSL_assert((words) <= (_bnum2)->dmax && \
193 (words) >= (_bnum2)->top); \
194 /* avoid unused variable warning with NDEBUG */ \
195 (void)(_bnum2); \
196 } while(0)
197
198# else /* !BN_DEBUG */
199
200# define bn_pollute(a)
201# define bn_check_top(a)
202# define bn_fix_top(a) bn_correct_top(a)
203# define bn_check_size(bn, bits)
204# define bn_wcheck_size(bn, words)
205
206# endif
207
208BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
209 BN_ULONG w);
210BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
211void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
212BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
213BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
214 int num);
215BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
216 int num);
217
218struct bignum_st {
219 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit
220 * chunks. */
221 int top; /* Index of last used d +1. */
222 /* The next are internal book keeping for bn_expand. */
223 int dmax; /* Size of the d array. */
224 int neg; /* one if the number is negative */
225 int flags;
226};
227
228/* Used for montgomery multiplication */
229struct bn_mont_ctx_st {
230 int ri; /* number of bits in R */
231 BIGNUM RR; /* used to convert to montgomery form */
232 BIGNUM N; /* The modulus */
233 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
234 * stored for bignum algorithm) */
235 BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
236 * changed with 0.9.9, was "BN_ULONG n0;"
237 * before) */
238 int flags;
239};
240
241/*
242 * Used for reciprocal division/mod functions It cannot be shared between
243 * threads
244 */
245struct bn_recp_ctx_st {
246 BIGNUM N; /* the divisor */
247 BIGNUM Nr; /* the reciprocal */
248 int num_bits;
249 int shift;
250 int flags;
251};
252
253/* Used for slow "generation" functions. */
254struct bn_gencb_st {
255 unsigned int ver; /* To handle binary (in)compatibility */
256 void *arg; /* callback-specific data */
257 union {
258 /* if (ver==1) - handles old style callbacks */
259 void (*cb_1) (int, int, void *);
260 /* if (ver==2) - new callback style */
261 int (*cb_2) (int, int, BN_GENCB *);
262 } cb;
263};
264
265/*-
266 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
267 *
268 *
269 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
270 * the number of multiplications is a constant plus on average
271 *
272 * 2^(w-1) + (b-w)/(w+1);
273 *
274 * here 2^(w-1) is for precomputing the table (we actually need
275 * entries only for windows that have the lowest bit set), and
276 * (b-w)/(w+1) is an approximation for the expected number of
277 * w-bit windows, not counting the first one.
278 *
279 * Thus we should use
280 *
281 * w >= 6 if b > 671
282 * w = 5 if 671 > b > 239
283 * w = 4 if 239 > b > 79
284 * w = 3 if 79 > b > 23
285 * w <= 2 if 23 > b
286 *
287 * (with draws in between). Very small exponents are often selected
288 * with low Hamming weight, so we use w = 1 for b <= 23.
289 */
290# define BN_window_bits_for_exponent_size(b) \
291 ((b) > 671 ? 6 : \
292 (b) > 239 ? 5 : \
293 (b) > 79 ? 4 : \
294 (b) > 23 ? 3 : 1)
295
296/*
297 * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
298 * line width of the target processor is at least the following value.
299 */
300# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
301# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
302
303/*
304 * Window sizes optimized for fixed window size modular exponentiation
305 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
306 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
307 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
308 * defined for cache line sizes of 32 and 64, cache line sizes where
309 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
310 * used on processors that have a 128 byte or greater cache line size.
311 */
312# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
313
314# define BN_window_bits_for_ctime_exponent_size(b) \
315 ((b) > 937 ? 6 : \
316 (b) > 306 ? 5 : \
317 (b) > 89 ? 4 : \
318 (b) > 22 ? 3 : 1)
319# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
320
321# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
322
323# define BN_window_bits_for_ctime_exponent_size(b) \
324 ((b) > 306 ? 5 : \
325 (b) > 89 ? 4 : \
326 (b) > 22 ? 3 : 1)
327# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
328
329# endif
330
331/* Pentium pro 16,16,16,32,64 */
332/* Alpha 16,16,16,16.64 */
333# define BN_MULL_SIZE_NORMAL (16)/* 32 */
334# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
335# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
336# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
337# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
338
339/*
340 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
341 * size_t was used to perform integer-only operations on pointers. This
342 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
343 * is still only 32 bits. What's needed in these cases is an integer type
344 * with the same size as a pointer, which size_t is not certain to be. The
345 * only fix here is VMS-specific.
346 */
347# if defined(OPENSSL_SYS_VMS)
348# if __INITIAL_POINTER_SIZE == 64
349# define PTR_SIZE_INT long long
350# else /* __INITIAL_POINTER_SIZE == 64 */
351# define PTR_SIZE_INT int
352# endif /* __INITIAL_POINTER_SIZE == 64 [else] */
353# elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
354# define PTR_SIZE_INT size_t
355# endif /* defined(OPENSSL_SYS_VMS) [else] */
356
357# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
358/*
359 * BN_UMULT_HIGH section.
360 *
361 * No, I'm not trying to overwhelm you when stating that the
362 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
363 * you to be impressed when I say that if the compiler doesn't
364 * support 2*N integer type, then you have to replace every N*N
365 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
366 * and additions which unavoidably results in severe performance
367 * penalties. Of course provided that the hardware is capable of
368 * producing 2*N result... That's when you normally start
369 * considering assembler implementation. However! It should be
370 * pointed out that some CPUs (most notably Alpha, PowerPC and
371 * upcoming IA-64 family:-) provide *separate* instruction
372 * calculating the upper half of the product placing the result
373 * into a general purpose register. Now *if* the compiler supports
374 * inline assembler, then it's not impossible to implement the
375 * "bignum" routines (and have the compiler optimize 'em)
376 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
377 * macro is about:-)
378 *
379 * <appro@fy.chalmers.se>
380 */
381# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
382# if defined(__DECC)
383# include <c_asm.h>
384# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
385# elif defined(__GNUC__) && __GNUC__>=2
386# define BN_UMULT_HIGH(a,b) ({ \
387 register BN_ULONG ret; \
388 asm ("umulh %1,%2,%0" \
389 : "=r"(ret) \
390 : "r"(a), "r"(b)); \
391 ret; })
392# endif /* compiler */
393# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
394# if defined(__GNUC__) && __GNUC__>=2
395# define BN_UMULT_HIGH(a,b) ({ \
396 register BN_ULONG ret; \
397 asm ("mulhdu %0,%1,%2" \
398 : "=r"(ret) \
399 : "r"(a), "r"(b)); \
400 ret; })
401# endif /* compiler */
402# elif (defined(__x86_64) || defined(__x86_64__)) && \
403 (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
404# if defined(__GNUC__) && __GNUC__>=2
405# define BN_UMULT_HIGH(a,b) ({ \
406 register BN_ULONG ret,discard; \
407 asm ("mulq %3" \
408 : "=a"(discard),"=d"(ret) \
409 : "a"(a), "g"(b) \
410 : "cc"); \
411 ret; })
412# define BN_UMULT_LOHI(low,high,a,b) \
413 asm ("mulq %3" \
414 : "=a"(low),"=d"(high) \
415 : "a"(a),"g"(b) \
416 : "cc");
417# endif
418# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
419# if defined(_MSC_VER) && _MSC_VER>=1400
420unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
421unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
422 unsigned __int64 *h);
423# pragma intrinsic(__umulh,_umul128)
424# define BN_UMULT_HIGH(a,b) __umulh((a),(b))
425# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
426# endif
427# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
428# if defined(__GNUC__) && __GNUC__>=2
429# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
430 /* "h" constraint is not an option on R6 and was removed in 4.4 */
431# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
432# define BN_UMULT_LOHI(low,high,a,b) ({ \
433 __uint128_t ret=(__uint128_t)(a)*(b); \
434 (high)=ret>>64; (low)=ret; })
435# else
436# define BN_UMULT_HIGH(a,b) ({ \
437 register BN_ULONG ret; \
438 asm ("dmultu %1,%2" \
439 : "=h"(ret) \
440 : "r"(a), "r"(b) : "l"); \
441 ret; })
442# define BN_UMULT_LOHI(low,high,a,b)\
443 asm ("dmultu %2,%3" \
444 : "=l"(low),"=h"(high) \
445 : "r"(a), "r"(b));
446# endif
447# endif
448# elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
449# if defined(__GNUC__) && __GNUC__>=2
450# define BN_UMULT_HIGH(a,b) ({ \
451 register BN_ULONG ret; \
452 asm ("umulh %0,%1,%2" \
453 : "=r"(ret) \
454 : "r"(a), "r"(b)); \
455 ret; })
456# endif
457# endif /* cpu */
458# endif /* OPENSSL_NO_ASM */
459
460/*************************************************************
461 * Using the long long type
462 */
463# define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
464# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
465
466# ifdef BN_DEBUG_RAND
467# define bn_clear_top2max(a) \
468 { \
469 int ind = (a)->dmax - (a)->top; \
470 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
471 for (; ind != 0; ind--) \
472 *(++ftl) = 0x0; \
473 }
474# else
475# define bn_clear_top2max(a)
476# endif
477
478# ifdef BN_LLONG
479# define mul_add(r,a,w,c) { \
480 BN_ULLONG t; \
481 t=(BN_ULLONG)w * (a) + (r) + (c); \
482 (r)= Lw(t); \
483 (c)= Hw(t); \
484 }
485
486# define mul(r,a,w,c) { \
487 BN_ULLONG t; \
488 t=(BN_ULLONG)w * (a) + (c); \
489 (r)= Lw(t); \
490 (c)= Hw(t); \
491 }
492
493# define sqr(r0,r1,a) { \
494 BN_ULLONG t; \
495 t=(BN_ULLONG)(a)*(a); \
496 (r0)=Lw(t); \
497 (r1)=Hw(t); \
498 }
499
500# elif defined(BN_UMULT_LOHI)
501# define mul_add(r,a,w,c) { \
502 BN_ULONG high,low,ret,tmp=(a); \
503 ret = (r); \
504 BN_UMULT_LOHI(low,high,w,tmp); \
505 ret += (c); \
506 (c) = (ret<(c))?1:0; \
507 (c) += high; \
508 ret += low; \
509 (c) += (ret<low)?1:0; \
510 (r) = ret; \
511 }
512
513# define mul(r,a,w,c) { \
514 BN_ULONG high,low,ret,ta=(a); \
515 BN_UMULT_LOHI(low,high,w,ta); \
516 ret = low + (c); \
517 (c) = high; \
518 (c) += (ret<low)?1:0; \
519 (r) = ret; \
520 }
521
522# define sqr(r0,r1,a) { \
523 BN_ULONG tmp=(a); \
524 BN_UMULT_LOHI(r0,r1,tmp,tmp); \
525 }
526
527# elif defined(BN_UMULT_HIGH)
528# define mul_add(r,a,w,c) { \
529 BN_ULONG high,low,ret,tmp=(a); \
530 ret = (r); \
531 high= BN_UMULT_HIGH(w,tmp); \
532 ret += (c); \
533 low = (w) * tmp; \
534 (c) = (ret<(c))?1:0; \
535 (c) += high; \
536 ret += low; \
537 (c) += (ret<low)?1:0; \
538 (r) = ret; \
539 }
540
541# define mul(r,a,w,c) { \
542 BN_ULONG high,low,ret,ta=(a); \
543 low = (w) * ta; \
544 high= BN_UMULT_HIGH(w,ta); \
545 ret = low + (c); \
546 (c) = high; \
547 (c) += (ret<low)?1:0; \
548 (r) = ret; \
549 }
550
551# define sqr(r0,r1,a) { \
552 BN_ULONG tmp=(a); \
553 (r0) = tmp * tmp; \
554 (r1) = BN_UMULT_HIGH(tmp,tmp); \
555 }
556
557# else
558/*************************************************************
559 * No long long type
560 */
561
562# define LBITS(a) ((a)&BN_MASK2l)
563# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
564# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
565
566# define LLBITS(a) ((a)&BN_MASKl)
567# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
568# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
569
570# define mul64(l,h,bl,bh) \
571 { \
572 BN_ULONG m,m1,lt,ht; \
573 \
574 lt=l; \
575 ht=h; \
576 m =(bh)*(lt); \
577 lt=(bl)*(lt); \
578 m1=(bl)*(ht); \
579 ht =(bh)*(ht); \
580 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
581 ht+=HBITS(m); \
582 m1=L2HBITS(m); \
583 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
584 (l)=lt; \
585 (h)=ht; \
586 }
587
588# define sqr64(lo,ho,in) \
589 { \
590 BN_ULONG l,h,m; \
591 \
592 h=(in); \
593 l=LBITS(h); \
594 h=HBITS(h); \
595 m =(l)*(h); \
596 l*=l; \
597 h*=h; \
598 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
599 m =(m&BN_MASK2l)<<(BN_BITS4+1); \
600 l=(l+m)&BN_MASK2; if (l < m) h++; \
601 (lo)=l; \
602 (ho)=h; \
603 }
604
605# define mul_add(r,a,bl,bh,c) { \
606 BN_ULONG l,h; \
607 \
608 h= (a); \
609 l=LBITS(h); \
610 h=HBITS(h); \
611 mul64(l,h,(bl),(bh)); \
612 \
613 /* non-multiply part */ \
614 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
615 (c)=(r); \
616 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
617 (c)=h&BN_MASK2; \
618 (r)=l; \
619 }
620
621# define mul(r,a,bl,bh,c) { \
622 BN_ULONG l,h; \
623 \
624 h= (a); \
625 l=LBITS(h); \
626 h=HBITS(h); \
627 mul64(l,h,(bl),(bh)); \
628 \
629 /* non-multiply part */ \
630 l+=(c); if ((l&BN_MASK2) < (c)) h++; \
631 (c)=h&BN_MASK2; \
632 (r)=l&BN_MASK2; \
633 }
634# endif /* !BN_LLONG */
635
636void BN_RECP_CTX_init(BN_RECP_CTX *recp);
637void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
638
639void bn_init(BIGNUM *a);
640void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
641void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
642void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
643void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
644void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
645void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
646int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
647int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
648void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
649 int dna, int dnb, BN_ULONG *t);
650void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
651 int n, int tna, int tnb, BN_ULONG *t);
652void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
653void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
654void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
655 BN_ULONG *t);
656void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
657 BN_ULONG *t);
658BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
659 int cl, int dl);
660BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
661 int cl, int dl);
662int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
663 const BN_ULONG *np, const BN_ULONG *n0, int num);
664
665BIGNUM *int_bn_mod_inverse(BIGNUM *in,
666 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
667 int *noinv);
668
669int bn_probable_prime_dh(BIGNUM *rnd, int bits,
670 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
671int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx);
672int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx);
673
674static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
675{
676 if (bits > (INT_MAX - BN_BITS2 + 1))
677 return NULL;
678
679 if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
680 return a;
681
682 return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
683}
684
685#ifdef __cplusplus
686}
687#endif
688
689#endif
Note: See TracBrowser for help on using the repository browser.