source: EcnlProtoTool/trunk/openssl-1.1.0e/crypto/bn/bn_gf2m.c@ 331

Last change on this file since 331 was 331, checked in by coas-nagasima, 6 years ago

prototoolに関連するプロジェクトをnewlibからmuslを使うよう変更・更新
ntshellをnewlibの下位の実装から、muslのsyscallの実装に変更・更新
以下のOSSをアップデート
・mruby-1.3.0
・musl-1.1.18
・onigmo-6.1.3
・tcc-0.9.27
以下のOSSを追加
・openssl-1.1.0e
・curl-7.57.0
・zlib-1.2.11
以下のmrbgemsを追加
・iij/mruby-digest
・iij/mruby-env
・iij/mruby-errno
・iij/mruby-iijson
・iij/mruby-ipaddr
・iij/mruby-mock
・iij/mruby-require
・iij/mruby-tls-openssl

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/x-csrc
File size: 30.6 KB
Line 
1/*
2 * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/* ====================================================================
11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12 *
13 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
14 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
15 * to the OpenSSL project.
16 *
17 * The ECC Code is licensed pursuant to the OpenSSL open source
18 * license provided below.
19 */
20
21#include <assert.h>
22#include <limits.h>
23#include <stdio.h>
24#include "internal/cryptlib.h"
25#include "bn_lcl.h"
26
27#ifndef OPENSSL_NO_EC2M
28
29/*
30 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
31 * fail.
32 */
33# define MAX_ITERATIONS 50
34
35static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
36 64, 65, 68, 69, 80, 81, 84, 85
37};
38
39/* Platform-specific macros to accelerate squaring. */
40# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
41# define SQR1(w) \
42 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
43 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
44 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
45 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
46# define SQR0(w) \
47 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
48 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
49 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
50 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
51# endif
52# ifdef THIRTY_TWO_BIT
53# define SQR1(w) \
54 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
55 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
56# define SQR0(w) \
57 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
58 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
59# endif
60
61# if !defined(OPENSSL_BN_ASM_GF2m)
62/*
63 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
64 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
65 * the variables have the right amount of space allocated.
66 */
67# ifdef THIRTY_TWO_BIT
68static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
69 const BN_ULONG b)
70{
71 register BN_ULONG h, l, s;
72 BN_ULONG tab[8], top2b = a >> 30;
73 register BN_ULONG a1, a2, a4;
74
75 a1 = a & (0x3FFFFFFF);
76 a2 = a1 << 1;
77 a4 = a2 << 1;
78
79 tab[0] = 0;
80 tab[1] = a1;
81 tab[2] = a2;
82 tab[3] = a1 ^ a2;
83 tab[4] = a4;
84 tab[5] = a1 ^ a4;
85 tab[6] = a2 ^ a4;
86 tab[7] = a1 ^ a2 ^ a4;
87
88 s = tab[b & 0x7];
89 l = s;
90 s = tab[b >> 3 & 0x7];
91 l ^= s << 3;
92 h = s >> 29;
93 s = tab[b >> 6 & 0x7];
94 l ^= s << 6;
95 h ^= s >> 26;
96 s = tab[b >> 9 & 0x7];
97 l ^= s << 9;
98 h ^= s >> 23;
99 s = tab[b >> 12 & 0x7];
100 l ^= s << 12;
101 h ^= s >> 20;
102 s = tab[b >> 15 & 0x7];
103 l ^= s << 15;
104 h ^= s >> 17;
105 s = tab[b >> 18 & 0x7];
106 l ^= s << 18;
107 h ^= s >> 14;
108 s = tab[b >> 21 & 0x7];
109 l ^= s << 21;
110 h ^= s >> 11;
111 s = tab[b >> 24 & 0x7];
112 l ^= s << 24;
113 h ^= s >> 8;
114 s = tab[b >> 27 & 0x7];
115 l ^= s << 27;
116 h ^= s >> 5;
117 s = tab[b >> 30];
118 l ^= s << 30;
119 h ^= s >> 2;
120
121 /* compensate for the top two bits of a */
122
123 if (top2b & 01) {
124 l ^= b << 30;
125 h ^= b >> 2;
126 }
127 if (top2b & 02) {
128 l ^= b << 31;
129 h ^= b >> 1;
130 }
131
132 *r1 = h;
133 *r0 = l;
134}
135# endif
136# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
137static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
138 const BN_ULONG b)
139{
140 register BN_ULONG h, l, s;
141 BN_ULONG tab[16], top3b = a >> 61;
142 register BN_ULONG a1, a2, a4, a8;
143
144 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
145 a2 = a1 << 1;
146 a4 = a2 << 1;
147 a8 = a4 << 1;
148
149 tab[0] = 0;
150 tab[1] = a1;
151 tab[2] = a2;
152 tab[3] = a1 ^ a2;
153 tab[4] = a4;
154 tab[5] = a1 ^ a4;
155 tab[6] = a2 ^ a4;
156 tab[7] = a1 ^ a2 ^ a4;
157 tab[8] = a8;
158 tab[9] = a1 ^ a8;
159 tab[10] = a2 ^ a8;
160 tab[11] = a1 ^ a2 ^ a8;
161 tab[12] = a4 ^ a8;
162 tab[13] = a1 ^ a4 ^ a8;
163 tab[14] = a2 ^ a4 ^ a8;
164 tab[15] = a1 ^ a2 ^ a4 ^ a8;
165
166 s = tab[b & 0xF];
167 l = s;
168 s = tab[b >> 4 & 0xF];
169 l ^= s << 4;
170 h = s >> 60;
171 s = tab[b >> 8 & 0xF];
172 l ^= s << 8;
173 h ^= s >> 56;
174 s = tab[b >> 12 & 0xF];
175 l ^= s << 12;
176 h ^= s >> 52;
177 s = tab[b >> 16 & 0xF];
178 l ^= s << 16;
179 h ^= s >> 48;
180 s = tab[b >> 20 & 0xF];
181 l ^= s << 20;
182 h ^= s >> 44;
183 s = tab[b >> 24 & 0xF];
184 l ^= s << 24;
185 h ^= s >> 40;
186 s = tab[b >> 28 & 0xF];
187 l ^= s << 28;
188 h ^= s >> 36;
189 s = tab[b >> 32 & 0xF];
190 l ^= s << 32;
191 h ^= s >> 32;
192 s = tab[b >> 36 & 0xF];
193 l ^= s << 36;
194 h ^= s >> 28;
195 s = tab[b >> 40 & 0xF];
196 l ^= s << 40;
197 h ^= s >> 24;
198 s = tab[b >> 44 & 0xF];
199 l ^= s << 44;
200 h ^= s >> 20;
201 s = tab[b >> 48 & 0xF];
202 l ^= s << 48;
203 h ^= s >> 16;
204 s = tab[b >> 52 & 0xF];
205 l ^= s << 52;
206 h ^= s >> 12;
207 s = tab[b >> 56 & 0xF];
208 l ^= s << 56;
209 h ^= s >> 8;
210 s = tab[b >> 60];
211 l ^= s << 60;
212 h ^= s >> 4;
213
214 /* compensate for the top three bits of a */
215
216 if (top3b & 01) {
217 l ^= b << 61;
218 h ^= b >> 3;
219 }
220 if (top3b & 02) {
221 l ^= b << 62;
222 h ^= b >> 2;
223 }
224 if (top3b & 04) {
225 l ^= b << 63;
226 h ^= b >> 1;
227 }
228
229 *r1 = h;
230 *r0 = l;
231}
232# endif
233
234/*
235 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
236 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
237 * ensure that the variables have the right amount of space allocated.
238 */
239static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
240 const BN_ULONG b1, const BN_ULONG b0)
241{
242 BN_ULONG m1, m0;
243 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
244 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
245 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
246 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
247 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
248 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
249 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
250}
251# else
252void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
253 BN_ULONG b0);
254# endif
255
256/*
257 * Add polynomials a and b and store result in r; r could be a or b, a and b
258 * could be equal; r is the bitwise XOR of a and b.
259 */
260int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
261{
262 int i;
263 const BIGNUM *at, *bt;
264
265 bn_check_top(a);
266 bn_check_top(b);
267
268 if (a->top < b->top) {
269 at = b;
270 bt = a;
271 } else {
272 at = a;
273 bt = b;
274 }
275
276 if (bn_wexpand(r, at->top) == NULL)
277 return 0;
278
279 for (i = 0; i < bt->top; i++) {
280 r->d[i] = at->d[i] ^ bt->d[i];
281 }
282 for (; i < at->top; i++) {
283 r->d[i] = at->d[i];
284 }
285
286 r->top = at->top;
287 bn_correct_top(r);
288
289 return 1;
290}
291
292/*-
293 * Some functions allow for representation of the irreducible polynomials
294 * as an int[], say p. The irreducible f(t) is then of the form:
295 * t^p[0] + t^p[1] + ... + t^p[k]
296 * where m = p[0] > p[1] > ... > p[k] = 0.
297 */
298
299/* Performs modular reduction of a and store result in r. r could be a. */
300int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
301{
302 int j, k;
303 int n, dN, d0, d1;
304 BN_ULONG zz, *z;
305
306 bn_check_top(a);
307
308 if (!p[0]) {
309 /* reduction mod 1 => return 0 */
310 BN_zero(r);
311 return 1;
312 }
313
314 /*
315 * Since the algorithm does reduction in the r value, if a != r, copy the
316 * contents of a into r so we can do reduction in r.
317 */
318 if (a != r) {
319 if (!bn_wexpand(r, a->top))
320 return 0;
321 for (j = 0; j < a->top; j++) {
322 r->d[j] = a->d[j];
323 }
324 r->top = a->top;
325 }
326 z = r->d;
327
328 /* start reduction */
329 dN = p[0] / BN_BITS2;
330 for (j = r->top - 1; j > dN;) {
331 zz = z[j];
332 if (z[j] == 0) {
333 j--;
334 continue;
335 }
336 z[j] = 0;
337
338 for (k = 1; p[k] != 0; k++) {
339 /* reducing component t^p[k] */
340 n = p[0] - p[k];
341 d0 = n % BN_BITS2;
342 d1 = BN_BITS2 - d0;
343 n /= BN_BITS2;
344 z[j - n] ^= (zz >> d0);
345 if (d0)
346 z[j - n - 1] ^= (zz << d1);
347 }
348
349 /* reducing component t^0 */
350 n = dN;
351 d0 = p[0] % BN_BITS2;
352 d1 = BN_BITS2 - d0;
353 z[j - n] ^= (zz >> d0);
354 if (d0)
355 z[j - n - 1] ^= (zz << d1);
356 }
357
358 /* final round of reduction */
359 while (j == dN) {
360
361 d0 = p[0] % BN_BITS2;
362 zz = z[dN] >> d0;
363 if (zz == 0)
364 break;
365 d1 = BN_BITS2 - d0;
366
367 /* clear up the top d1 bits */
368 if (d0)
369 z[dN] = (z[dN] << d1) >> d1;
370 else
371 z[dN] = 0;
372 z[0] ^= zz; /* reduction t^0 component */
373
374 for (k = 1; p[k] != 0; k++) {
375 BN_ULONG tmp_ulong;
376
377 /* reducing component t^p[k] */
378 n = p[k] / BN_BITS2;
379 d0 = p[k] % BN_BITS2;
380 d1 = BN_BITS2 - d0;
381 z[n] ^= (zz << d0);
382 if (d0 && (tmp_ulong = zz >> d1))
383 z[n + 1] ^= tmp_ulong;
384 }
385
386 }
387
388 bn_correct_top(r);
389 return 1;
390}
391
392/*
393 * Performs modular reduction of a by p and store result in r. r could be a.
394 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
395 * function is only provided for convenience; for best performance, use the
396 * BN_GF2m_mod_arr function.
397 */
398int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
399{
400 int ret = 0;
401 int arr[6];
402 bn_check_top(a);
403 bn_check_top(p);
404 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
405 if (!ret || ret > (int)OSSL_NELEM(arr)) {
406 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
407 return 0;
408 }
409 ret = BN_GF2m_mod_arr(r, a, arr);
410 bn_check_top(r);
411 return ret;
412}
413
414/*
415 * Compute the product of two polynomials a and b, reduce modulo p, and store
416 * the result in r. r could be a or b; a could be b.
417 */
418int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
419 const int p[], BN_CTX *ctx)
420{
421 int zlen, i, j, k, ret = 0;
422 BIGNUM *s;
423 BN_ULONG x1, x0, y1, y0, zz[4];
424
425 bn_check_top(a);
426 bn_check_top(b);
427
428 if (a == b) {
429 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
430 }
431
432 BN_CTX_start(ctx);
433 if ((s = BN_CTX_get(ctx)) == NULL)
434 goto err;
435
436 zlen = a->top + b->top + 4;
437 if (!bn_wexpand(s, zlen))
438 goto err;
439 s->top = zlen;
440
441 for (i = 0; i < zlen; i++)
442 s->d[i] = 0;
443
444 for (j = 0; j < b->top; j += 2) {
445 y0 = b->d[j];
446 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
447 for (i = 0; i < a->top; i += 2) {
448 x0 = a->d[i];
449 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
450 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
451 for (k = 0; k < 4; k++)
452 s->d[i + j + k] ^= zz[k];
453 }
454 }
455
456 bn_correct_top(s);
457 if (BN_GF2m_mod_arr(r, s, p))
458 ret = 1;
459 bn_check_top(r);
460
461 err:
462 BN_CTX_end(ctx);
463 return ret;
464}
465
466/*
467 * Compute the product of two polynomials a and b, reduce modulo p, and store
468 * the result in r. r could be a or b; a could equal b. This function calls
469 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
470 * only provided for convenience; for best performance, use the
471 * BN_GF2m_mod_mul_arr function.
472 */
473int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
474 const BIGNUM *p, BN_CTX *ctx)
475{
476 int ret = 0;
477 const int max = BN_num_bits(p) + 1;
478 int *arr = NULL;
479 bn_check_top(a);
480 bn_check_top(b);
481 bn_check_top(p);
482 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
483 goto err;
484 ret = BN_GF2m_poly2arr(p, arr, max);
485 if (!ret || ret > max) {
486 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
487 goto err;
488 }
489 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
490 bn_check_top(r);
491 err:
492 OPENSSL_free(arr);
493 return ret;
494}
495
496/* Square a, reduce the result mod p, and store it in a. r could be a. */
497int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
498 BN_CTX *ctx)
499{
500 int i, ret = 0;
501 BIGNUM *s;
502
503 bn_check_top(a);
504 BN_CTX_start(ctx);
505 if ((s = BN_CTX_get(ctx)) == NULL)
506 goto err;
507 if (!bn_wexpand(s, 2 * a->top))
508 goto err;
509
510 for (i = a->top - 1; i >= 0; i--) {
511 s->d[2 * i + 1] = SQR1(a->d[i]);
512 s->d[2 * i] = SQR0(a->d[i]);
513 }
514
515 s->top = 2 * a->top;
516 bn_correct_top(s);
517 if (!BN_GF2m_mod_arr(r, s, p))
518 goto err;
519 bn_check_top(r);
520 ret = 1;
521 err:
522 BN_CTX_end(ctx);
523 return ret;
524}
525
526/*
527 * Square a, reduce the result mod p, and store it in a. r could be a. This
528 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
529 * wrapper function is only provided for convenience; for best performance,
530 * use the BN_GF2m_mod_sqr_arr function.
531 */
532int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
533{
534 int ret = 0;
535 const int max = BN_num_bits(p) + 1;
536 int *arr = NULL;
537
538 bn_check_top(a);
539 bn_check_top(p);
540 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
541 goto err;
542 ret = BN_GF2m_poly2arr(p, arr, max);
543 if (!ret || ret > max) {
544 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
545 goto err;
546 }
547 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
548 bn_check_top(r);
549 err:
550 OPENSSL_free(arr);
551 return ret;
552}
553
554/*
555 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
556 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
557 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
558 * Curve Cryptography Over Binary Fields".
559 */
560int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
561{
562 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
563 int ret = 0;
564
565 bn_check_top(a);
566 bn_check_top(p);
567
568 BN_CTX_start(ctx);
569
570 if ((b = BN_CTX_get(ctx)) == NULL)
571 goto err;
572 if ((c = BN_CTX_get(ctx)) == NULL)
573 goto err;
574 if ((u = BN_CTX_get(ctx)) == NULL)
575 goto err;
576 if ((v = BN_CTX_get(ctx)) == NULL)
577 goto err;
578
579 if (!BN_GF2m_mod(u, a, p))
580 goto err;
581 if (BN_is_zero(u))
582 goto err;
583
584 if (!BN_copy(v, p))
585 goto err;
586# if 0
587 if (!BN_one(b))
588 goto err;
589
590 while (1) {
591 while (!BN_is_odd(u)) {
592 if (BN_is_zero(u))
593 goto err;
594 if (!BN_rshift1(u, u))
595 goto err;
596 if (BN_is_odd(b)) {
597 if (!BN_GF2m_add(b, b, p))
598 goto err;
599 }
600 if (!BN_rshift1(b, b))
601 goto err;
602 }
603
604 if (BN_abs_is_word(u, 1))
605 break;
606
607 if (BN_num_bits(u) < BN_num_bits(v)) {
608 tmp = u;
609 u = v;
610 v = tmp;
611 tmp = b;
612 b = c;
613 c = tmp;
614 }
615
616 if (!BN_GF2m_add(u, u, v))
617 goto err;
618 if (!BN_GF2m_add(b, b, c))
619 goto err;
620 }
621# else
622 {
623 int i;
624 int ubits = BN_num_bits(u);
625 int vbits = BN_num_bits(v); /* v is copy of p */
626 int top = p->top;
627 BN_ULONG *udp, *bdp, *vdp, *cdp;
628
629 if (!bn_wexpand(u, top))
630 goto err;
631 udp = u->d;
632 for (i = u->top; i < top; i++)
633 udp[i] = 0;
634 u->top = top;
635 if (!bn_wexpand(b, top))
636 goto err;
637 bdp = b->d;
638 bdp[0] = 1;
639 for (i = 1; i < top; i++)
640 bdp[i] = 0;
641 b->top = top;
642 if (!bn_wexpand(c, top))
643 goto err;
644 cdp = c->d;
645 for (i = 0; i < top; i++)
646 cdp[i] = 0;
647 c->top = top;
648 vdp = v->d; /* It pays off to "cache" *->d pointers,
649 * because it allows optimizer to be more
650 * aggressive. But we don't have to "cache"
651 * p->d, because *p is declared 'const'... */
652 while (1) {
653 while (ubits && !(udp[0] & 1)) {
654 BN_ULONG u0, u1, b0, b1, mask;
655
656 u0 = udp[0];
657 b0 = bdp[0];
658 mask = (BN_ULONG)0 - (b0 & 1);
659 b0 ^= p->d[0] & mask;
660 for (i = 0; i < top - 1; i++) {
661 u1 = udp[i + 1];
662 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
663 u0 = u1;
664 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
665 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
666 b0 = b1;
667 }
668 udp[i] = u0 >> 1;
669 bdp[i] = b0 >> 1;
670 ubits--;
671 }
672
673 if (ubits <= BN_BITS2) {
674 if (udp[0] == 0) /* poly was reducible */
675 goto err;
676 if (udp[0] == 1)
677 break;
678 }
679
680 if (ubits < vbits) {
681 i = ubits;
682 ubits = vbits;
683 vbits = i;
684 tmp = u;
685 u = v;
686 v = tmp;
687 tmp = b;
688 b = c;
689 c = tmp;
690 udp = vdp;
691 vdp = v->d;
692 bdp = cdp;
693 cdp = c->d;
694 }
695 for (i = 0; i < top; i++) {
696 udp[i] ^= vdp[i];
697 bdp[i] ^= cdp[i];
698 }
699 if (ubits == vbits) {
700 BN_ULONG ul;
701 int utop = (ubits - 1) / BN_BITS2;
702
703 while ((ul = udp[utop]) == 0 && utop)
704 utop--;
705 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
706 }
707 }
708 bn_correct_top(b);
709 }
710# endif
711
712 if (!BN_copy(r, b))
713 goto err;
714 bn_check_top(r);
715 ret = 1;
716
717 err:
718# ifdef BN_DEBUG /* BN_CTX_end would complain about the
719 * expanded form */
720 bn_correct_top(c);
721 bn_correct_top(u);
722 bn_correct_top(v);
723# endif
724 BN_CTX_end(ctx);
725 return ret;
726}
727
728/*
729 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
730 * This function calls down to the BN_GF2m_mod_inv implementation; this
731 * wrapper function is only provided for convenience; for best performance,
732 * use the BN_GF2m_mod_inv function.
733 */
734int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
735 BN_CTX *ctx)
736{
737 BIGNUM *field;
738 int ret = 0;
739
740 bn_check_top(xx);
741 BN_CTX_start(ctx);
742 if ((field = BN_CTX_get(ctx)) == NULL)
743 goto err;
744 if (!BN_GF2m_arr2poly(p, field))
745 goto err;
746
747 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
748 bn_check_top(r);
749
750 err:
751 BN_CTX_end(ctx);
752 return ret;
753}
754
755# ifndef OPENSSL_SUN_GF2M_DIV
756/*
757 * Divide y by x, reduce modulo p, and store the result in r. r could be x
758 * or y, x could equal y.
759 */
760int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
761 const BIGNUM *p, BN_CTX *ctx)
762{
763 BIGNUM *xinv = NULL;
764 int ret = 0;
765
766 bn_check_top(y);
767 bn_check_top(x);
768 bn_check_top(p);
769
770 BN_CTX_start(ctx);
771 xinv = BN_CTX_get(ctx);
772 if (xinv == NULL)
773 goto err;
774
775 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
776 goto err;
777 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
778 goto err;
779 bn_check_top(r);
780 ret = 1;
781
782 err:
783 BN_CTX_end(ctx);
784 return ret;
785}
786# else
787/*
788 * Divide y by x, reduce modulo p, and store the result in r. r could be x
789 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
790 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
791 * Great Divide".
792 */
793int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
794 const BIGNUM *p, BN_CTX *ctx)
795{
796 BIGNUM *a, *b, *u, *v;
797 int ret = 0;
798
799 bn_check_top(y);
800 bn_check_top(x);
801 bn_check_top(p);
802
803 BN_CTX_start(ctx);
804
805 a = BN_CTX_get(ctx);
806 b = BN_CTX_get(ctx);
807 u = BN_CTX_get(ctx);
808 v = BN_CTX_get(ctx);
809 if (v == NULL)
810 goto err;
811
812 /* reduce x and y mod p */
813 if (!BN_GF2m_mod(u, y, p))
814 goto err;
815 if (!BN_GF2m_mod(a, x, p))
816 goto err;
817 if (!BN_copy(b, p))
818 goto err;
819
820 while (!BN_is_odd(a)) {
821 if (!BN_rshift1(a, a))
822 goto err;
823 if (BN_is_odd(u))
824 if (!BN_GF2m_add(u, u, p))
825 goto err;
826 if (!BN_rshift1(u, u))
827 goto err;
828 }
829
830 do {
831 if (BN_GF2m_cmp(b, a) > 0) {
832 if (!BN_GF2m_add(b, b, a))
833 goto err;
834 if (!BN_GF2m_add(v, v, u))
835 goto err;
836 do {
837 if (!BN_rshift1(b, b))
838 goto err;
839 if (BN_is_odd(v))
840 if (!BN_GF2m_add(v, v, p))
841 goto err;
842 if (!BN_rshift1(v, v))
843 goto err;
844 } while (!BN_is_odd(b));
845 } else if (BN_abs_is_word(a, 1))
846 break;
847 else {
848 if (!BN_GF2m_add(a, a, b))
849 goto err;
850 if (!BN_GF2m_add(u, u, v))
851 goto err;
852 do {
853 if (!BN_rshift1(a, a))
854 goto err;
855 if (BN_is_odd(u))
856 if (!BN_GF2m_add(u, u, p))
857 goto err;
858 if (!BN_rshift1(u, u))
859 goto err;
860 } while (!BN_is_odd(a));
861 }
862 } while (1);
863
864 if (!BN_copy(r, u))
865 goto err;
866 bn_check_top(r);
867 ret = 1;
868
869 err:
870 BN_CTX_end(ctx);
871 return ret;
872}
873# endif
874
875/*
876 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
877 * * or yy, xx could equal yy. This function calls down to the
878 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
879 * convenience; for best performance, use the BN_GF2m_mod_div function.
880 */
881int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
882 const int p[], BN_CTX *ctx)
883{
884 BIGNUM *field;
885 int ret = 0;
886
887 bn_check_top(yy);
888 bn_check_top(xx);
889
890 BN_CTX_start(ctx);
891 if ((field = BN_CTX_get(ctx)) == NULL)
892 goto err;
893 if (!BN_GF2m_arr2poly(p, field))
894 goto err;
895
896 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
897 bn_check_top(r);
898
899 err:
900 BN_CTX_end(ctx);
901 return ret;
902}
903
904/*
905 * Compute the bth power of a, reduce modulo p, and store the result in r. r
906 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
907 * P1363.
908 */
909int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
910 const int p[], BN_CTX *ctx)
911{
912 int ret = 0, i, n;
913 BIGNUM *u;
914
915 bn_check_top(a);
916 bn_check_top(b);
917
918 if (BN_is_zero(b))
919 return (BN_one(r));
920
921 if (BN_abs_is_word(b, 1))
922 return (BN_copy(r, a) != NULL);
923
924 BN_CTX_start(ctx);
925 if ((u = BN_CTX_get(ctx)) == NULL)
926 goto err;
927
928 if (!BN_GF2m_mod_arr(u, a, p))
929 goto err;
930
931 n = BN_num_bits(b) - 1;
932 for (i = n - 1; i >= 0; i--) {
933 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
934 goto err;
935 if (BN_is_bit_set(b, i)) {
936 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
937 goto err;
938 }
939 }
940 if (!BN_copy(r, u))
941 goto err;
942 bn_check_top(r);
943 ret = 1;
944 err:
945 BN_CTX_end(ctx);
946 return ret;
947}
948
949/*
950 * Compute the bth power of a, reduce modulo p, and store the result in r. r
951 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
952 * implementation; this wrapper function is only provided for convenience;
953 * for best performance, use the BN_GF2m_mod_exp_arr function.
954 */
955int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
956 const BIGNUM *p, BN_CTX *ctx)
957{
958 int ret = 0;
959 const int max = BN_num_bits(p) + 1;
960 int *arr = NULL;
961 bn_check_top(a);
962 bn_check_top(b);
963 bn_check_top(p);
964 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
965 goto err;
966 ret = BN_GF2m_poly2arr(p, arr, max);
967 if (!ret || ret > max) {
968 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
969 goto err;
970 }
971 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
972 bn_check_top(r);
973 err:
974 OPENSSL_free(arr);
975 return ret;
976}
977
978/*
979 * Compute the square root of a, reduce modulo p, and store the result in r.
980 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
981 */
982int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
983 BN_CTX *ctx)
984{
985 int ret = 0;
986 BIGNUM *u;
987
988 bn_check_top(a);
989
990 if (!p[0]) {
991 /* reduction mod 1 => return 0 */
992 BN_zero(r);
993 return 1;
994 }
995
996 BN_CTX_start(ctx);
997 if ((u = BN_CTX_get(ctx)) == NULL)
998 goto err;
999
1000 if (!BN_set_bit(u, p[0] - 1))
1001 goto err;
1002 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1003 bn_check_top(r);
1004
1005 err:
1006 BN_CTX_end(ctx);
1007 return ret;
1008}
1009
1010/*
1011 * Compute the square root of a, reduce modulo p, and store the result in r.
1012 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1013 * implementation; this wrapper function is only provided for convenience;
1014 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1015 */
1016int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1017{
1018 int ret = 0;
1019 const int max = BN_num_bits(p) + 1;
1020 int *arr = NULL;
1021 bn_check_top(a);
1022 bn_check_top(p);
1023 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1024 goto err;
1025 ret = BN_GF2m_poly2arr(p, arr, max);
1026 if (!ret || ret > max) {
1027 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1028 goto err;
1029 }
1030 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1031 bn_check_top(r);
1032 err:
1033 OPENSSL_free(arr);
1034 return ret;
1035}
1036
1037/*
1038 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1039 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1040 */
1041int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1042 BN_CTX *ctx)
1043{
1044 int ret = 0, count = 0, j;
1045 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1046
1047 bn_check_top(a_);
1048
1049 if (!p[0]) {
1050 /* reduction mod 1 => return 0 */
1051 BN_zero(r);
1052 return 1;
1053 }
1054
1055 BN_CTX_start(ctx);
1056 a = BN_CTX_get(ctx);
1057 z = BN_CTX_get(ctx);
1058 w = BN_CTX_get(ctx);
1059 if (w == NULL)
1060 goto err;
1061
1062 if (!BN_GF2m_mod_arr(a, a_, p))
1063 goto err;
1064
1065 if (BN_is_zero(a)) {
1066 BN_zero(r);
1067 ret = 1;
1068 goto err;
1069 }
1070
1071 if (p[0] & 0x1) { /* m is odd */
1072 /* compute half-trace of a */
1073 if (!BN_copy(z, a))
1074 goto err;
1075 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1076 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1077 goto err;
1078 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1079 goto err;
1080 if (!BN_GF2m_add(z, z, a))
1081 goto err;
1082 }
1083
1084 } else { /* m is even */
1085
1086 rho = BN_CTX_get(ctx);
1087 w2 = BN_CTX_get(ctx);
1088 tmp = BN_CTX_get(ctx);
1089 if (tmp == NULL)
1090 goto err;
1091 do {
1092 if (!BN_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
1093 goto err;
1094 if (!BN_GF2m_mod_arr(rho, rho, p))
1095 goto err;
1096 BN_zero(z);
1097 if (!BN_copy(w, rho))
1098 goto err;
1099 for (j = 1; j <= p[0] - 1; j++) {
1100 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1101 goto err;
1102 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1103 goto err;
1104 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1105 goto err;
1106 if (!BN_GF2m_add(z, z, tmp))
1107 goto err;
1108 if (!BN_GF2m_add(w, w2, rho))
1109 goto err;
1110 }
1111 count++;
1112 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1113 if (BN_is_zero(w)) {
1114 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1115 goto err;
1116 }
1117 }
1118
1119 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1120 goto err;
1121 if (!BN_GF2m_add(w, z, w))
1122 goto err;
1123 if (BN_GF2m_cmp(w, a)) {
1124 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1125 goto err;
1126 }
1127
1128 if (!BN_copy(r, z))
1129 goto err;
1130 bn_check_top(r);
1131
1132 ret = 1;
1133
1134 err:
1135 BN_CTX_end(ctx);
1136 return ret;
1137}
1138
1139/*
1140 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1141 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1142 * implementation; this wrapper function is only provided for convenience;
1143 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1144 */
1145int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1146 BN_CTX *ctx)
1147{
1148 int ret = 0;
1149 const int max = BN_num_bits(p) + 1;
1150 int *arr = NULL;
1151 bn_check_top(a);
1152 bn_check_top(p);
1153 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
1154 goto err;
1155 ret = BN_GF2m_poly2arr(p, arr, max);
1156 if (!ret || ret > max) {
1157 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1158 goto err;
1159 }
1160 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1161 bn_check_top(r);
1162 err:
1163 OPENSSL_free(arr);
1164 return ret;
1165}
1166
1167/*
1168 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1169 * x^i) into an array of integers corresponding to the bits with non-zero
1170 * coefficient. Array is terminated with -1. Up to max elements of the array
1171 * will be filled. Return value is total number of array elements that would
1172 * be filled if array was large enough.
1173 */
1174int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1175{
1176 int i, j, k = 0;
1177 BN_ULONG mask;
1178
1179 if (BN_is_zero(a))
1180 return 0;
1181
1182 for (i = a->top - 1; i >= 0; i--) {
1183 if (!a->d[i])
1184 /* skip word if a->d[i] == 0 */
1185 continue;
1186 mask = BN_TBIT;
1187 for (j = BN_BITS2 - 1; j >= 0; j--) {
1188 if (a->d[i] & mask) {
1189 if (k < max)
1190 p[k] = BN_BITS2 * i + j;
1191 k++;
1192 }
1193 mask >>= 1;
1194 }
1195 }
1196
1197 if (k < max) {
1198 p[k] = -1;
1199 k++;
1200 }
1201
1202 return k;
1203}
1204
1205/*
1206 * Convert the coefficient array representation of a polynomial to a
1207 * bit-string. The array must be terminated by -1.
1208 */
1209int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1210{
1211 int i;
1212
1213 bn_check_top(a);
1214 BN_zero(a);
1215 for (i = 0; p[i] != -1; i++) {
1216 if (BN_set_bit(a, p[i]) == 0)
1217 return 0;
1218 }
1219 bn_check_top(a);
1220
1221 return 1;
1222}
1223
1224#endif
Note: See TracBrowser for help on using the repository browser.